|
import os |
|
import gradio as gr |
|
from google import genai |
|
from google.genai import types |
|
import requests |
|
import markdownify |
|
from urllib.robotparser import RobotFileParser |
|
from urllib.parse import urlparse |
|
|
|
|
|
def can_crawl_url(url: str, user_agent: str = "*") -> bool: |
|
"""Check robots.txt permissions for a URL""" |
|
try: |
|
parsed_url = urlparse(url) |
|
robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt" |
|
rp = RobotFileParser(robots_url) |
|
rp.read() |
|
return rp.can_fetch(user_agent, url) |
|
except Exception as e: |
|
print(f"Error checking robots.txt: {e}") |
|
return False |
|
|
|
def load_page(url: str) -> str: |
|
"""Load webpage content as markdown""" |
|
if not can_crawl_url(url): |
|
return f"URL {url} failed robots.txt check" |
|
try: |
|
response = requests.get(url, timeout=10) |
|
return markdownify.markdownify(response.text) |
|
except Exception as e: |
|
return f"Error loading page: {str(e)}" |
|
|
|
|
|
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY")) |
|
MODEL = "gemini-2.0-flash" |
|
|
|
TOOL_CONFIGS = { |
|
"web": [ |
|
types.Tool( |
|
function_declarations=[ |
|
types.FunctionDeclaration( |
|
name="load_page", |
|
description="Load webpage content as markdown", |
|
parameters={ |
|
"type": "object", |
|
"properties": { |
|
"url": {"type": "string", "description": "Full URL to load"} |
|
}, |
|
"required": ["url"] |
|
} |
|
) |
|
] |
|
), |
|
types.Tool(google_search=types.GoogleSearch()) |
|
], |
|
"code": [ |
|
types.Tool(code_execution=types.ToolCodeExecution()) |
|
] |
|
} |
|
|
|
SYSTEM_INSTRUCTION = """You are an AI assistant. Choose appropriate tools based on the query: |
|
- Use web tools for real-time information |
|
- Use code execution for calculations/analysis |
|
- Never combine search with code execution""" |
|
|
|
def format_response(parts): |
|
"""Format response parts with proper Markdown formatting""" |
|
formatted = [] |
|
for part in parts: |
|
if part.text: |
|
formatted.append(part.text) |
|
if part.executable_code: |
|
formatted.append(f"```python\n{part.executable_code.code}\n```") |
|
if part.code_execution_result: |
|
formatted.append(f"**Result**:\n```\n{part.code_execution_result.output}\n```") |
|
return "\n\n".join(formatted) |
|
|
|
def select_tools(query: str) -> list: |
|
"""Select appropriate tools based on query content""" |
|
if any(keyword in query.lower() for keyword in ["plot", "calculate", "simulate", "algorithm"]): |
|
return TOOL_CONFIGS["code"] |
|
return TOOL_CONFIGS["web"] |
|
|
|
def generate_response(user_input): |
|
try: |
|
if not user_input.strip(): |
|
raise ValueError("Please enter a valid query") |
|
|
|
selected_tools = select_tools(user_input) |
|
|
|
response = client.models.generate_content( |
|
model=MODEL, |
|
contents=[user_input], |
|
config=types.GenerateContentConfig( |
|
temperature=0.7, |
|
tools=selected_tools, |
|
system_instruction=SYSTEM_INSTRUCTION |
|
) |
|
) |
|
|
|
return format_response(response.candidates[0].content.parts) |
|
|
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
|
|
with gr.Blocks(title="Gemini AI Assistant") as demo: |
|
gr.Markdown("# π Gemini AI Assistant") |
|
gr.Markdown("Web β’ Code β’ Data Analysis") |
|
|
|
with gr.Row(): |
|
input_box = gr.Textbox( |
|
label="Your Query", |
|
placeholder="Ask anything...", |
|
lines=3, |
|
max_lines=10 |
|
) |
|
output_box = gr.Markdown( |
|
label="Response", |
|
elem_classes="markdown-output" |
|
) |
|
|
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
clear_btn = gr.Button("Clear") |
|
|
|
def clear(): |
|
return ["", ""] |
|
|
|
submit_btn.click( |
|
fn=generate_response, |
|
inputs=input_box, |
|
outputs=output_box |
|
) |
|
|
|
clear_btn.click( |
|
fn=clear, |
|
inputs=[], |
|
outputs=[input_box, output_box] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860) |