File size: 9,397 Bytes
5f3d5cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
## Documentation
# Quickstart: https://github.com/google-gemini/cookbook/blob/main/quickstarts/Get_started_LiveAPI.py
#
## Setup
#
# To install the dependencies for this script, run:
#
# ```
# pip install google-genai opencv-python pyaudio pillow mss
# ```
import asyncio
import base64
import io
import traceback
import cv2
import pyaudio
import PIL.Image
import mss
import argparse
from google import genai
from google.genai import types
import gradio as gr
FORMAT = pyaudio.paInt16
CHANNELS = 1
SEND_SAMPLE_RATE = 16000
RECEIVE_SAMPLE_RATE = 24000
CHUNK_SIZE = 1024
MODEL = "models/gemini-2.0-flash-exp"
DEFAULT_MODE = "camera"
# Replace with your actual API key
# client = genai.Client(http_options={"api_version": "v1alpha"}, api_key="YOUR_API_KEY")
client = genai.Client(http_options={"api_version": "v1alpha"}, api_key="GEMINI_API_KEY")
# While Gemini 2.0 Flash is in experimental preview mode, only one of AUDIO or
# TEXT may be passed here.
CONFIG = types.LiveConnectConfig(
response_modalities=[
"audio",
],
speech_config=types.SpeechConfig(
voice_config=types.VoiceConfig(
prebuilt_voice_config=types.PrebuiltVoiceConfig(voice_name="Puck")
)
),
system_instruction=types.Content(
parts=[types.Part.from_text(text="Answer user ask replay same thing user say no other word explain ")],
role="user"
),
)
pya = pyaudio.PyAudio()
class AudioLoop:
def __init__(self, video_mode=DEFAULT_MODE):
self.video_mode = video_mode
self.audio_in_queue = None
self.out_queue = None
self.session = None
self.send_text_task = None
self.receive_audio_task = None
self.play_audio_task = None
async def send_text(self, text):
# while True:
# text = await asyncio.to_thread(
# input,
# "message > ",
# )
# if text.lower() == "q":
# break
await self.session.send(input=text or ".", end_of_turn=True)
def _get_frame(self, cap):
# Read the frameq
ret, frame = cap.read()
# Check if the frame was read successfully
if not ret:
return None
# Fix: Convert BGR to RGB color space
# OpenCV captures in BGR but PIL expects RGB format
# This prevents the blue tint in the video feed
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = PIL.Image.fromarray(frame_rgb) # Now using RGB frame
img.thumbnail([1024, 1024])
image_io = io.BytesIO()
img.save(image_io, format="jpeg")
image_io.seek(0)
mime_type = "image/jpeg"
image_bytes = image_io.read()
return {"mime_type": mime_type, "data": base64.b64encode(image_bytes).decode()}
async def get_frames(self):
# This takes about a second, and will block the whole program
# causing the audio pipeline to overflow if you don't to_thread it.
cap = await asyncio.to_thread(
cv2.VideoCapture, 0
) # 0 represents the default camera
while True:
frame = await asyncio.to_thread(self._get_frame, cap)
if frame is None:
break
await asyncio.sleep(1.0)
await self.out_queue.put(frame)
# Release the VideoCapture object
cap.release()
def _get_screen(self):
sct = mss.mss()
monitor = sct.monitors[0]
i = sct.grab(monitor)
mime_type = "image/jpeg"
image_bytes = mss.tools.to_png(i.rgb, i.size)
img = PIL.Image.open(io.BytesIO(image_bytes))
image_io = io.BytesIO()
img.save(image_io, format="jpeg")
image_io.seek(0)
image_bytes = image_io.read()
return {"mime_type": mime_type, "data": base64.b64encode(image_bytes).decode()}
async def get_screen(self):
while True:
frame = await asyncio.to_thread(self._get_screen)
if frame is None:
break
await asyncio.sleep(1.0)
await self.out_queue.put(frame)
async def send_realtime(self):
while True:
msg = await self.out_queue.get()
await self.session.send(input=msg)
async def listen_audio(self):
mic_info = pya.get_default_input_device_info()
self.audio_stream = await asyncio.to_thread(
pya.open,
format=FORMAT,
channels=CHANNELS,
rate=SEND_SAMPLE_RATE,
input=True,
input_device_index=mic_info["index"],
frames_per_buffer=CHUNK_SIZE,
)
if __debug__:
kwargs = {"exception_on_overflow": False}
else:
kwargs = {}
while True:
data = await asyncio.to_thread(self.audio_stream.read, CHUNK_SIZE, **kwargs)
await self.out_queue.put({"data": data, "mime_type": "audio/pcm"})
async def receive_audio(self):
"Background task to reads from the websocket and write pcm chunks to the output queue"
while True:
turn = self.session.receive()
async for response in turn:
if data := response.data:
self.audio_in_queue.put_nowait(data)
continue
if text := response.text:
# print(text, end="") # Don't print to console, return it
return text # Return the text to Gradio
# If you interrupt the model, it sends a turn_complete.
# For interruptions to work, we need to stop playback.
# So empty out the audio queue because it may have loaded
# much more audio than has played yet.
while not self.audio_in_queue.empty():
self.audio_in_queue.get_nowait()
async def play_audio(self):
stream = await asyncio.to_thread(
pya.open,
format=FORMAT,
channels=CHANNELS,
rate=RECEIVE_SAMPLE_RATE,
output=True,
)
while True:
bytestream = await self.audio_in_queue.get()
await asyncio.to_thread(stream.write, bytestream)
async def run(self):
try:
async with (
client.aio.live.connect(model=MODEL, config=CONFIG) as session,
asyncio.TaskGroup() as tg,
):
self.session = session
self.audio_in_queue = asyncio.Queue()
self.out_queue = asyncio.Queue(maxsize=5)
# send_text_task = tg.create_task(self.send_text()) #No text task anymore.
tg.create_task(self.send_realtime())
tg.create_task(self.listen_audio())
if self.video_mode == "camera":
tg.create_task(self.get_frames())
elif self.video_mode == "screen":
tg.create_task(self.get_screen())
tg.create_task(self.receive_audio())
tg.create_task(self.play_audio())
# await send_text_task
# raise asyncio.CancelledError("User requested exit")
return await self.receive_audio() #return audio transcript result
except asyncio.CancelledError:
pass
except ExceptionGroup as EG:
self.audio_stream.close()
traceback.print_exception(EG)
except Exception as e:
traceback.print_exc() # Print the traceback for debugging
return f"Error: {str(e)}" # Return error message
# Global instance
audio_loop = None # Initialize the AudioLoop object
async def transcribe_audio(text_input):
"""
Transcribes audio using the AudioLoop class and returns the result.
"""
global audio_loop
if audio_loop is None:
audio_loop = AudioLoop(video_mode="none") # Instantiate the class only once
# You might want to handle the initialization differently based on your needs.
loop = asyncio.get_event_loop()
# if loop.is_running():
# print("Async event loop already running. Using existing loop.")
# task = loop.create_task(audio_loop.send_text(text_input))
# return await task
# else:
# print("Starting new async event loop.")
# return asyncio.run(audio_loop.send_text(text_input))
if audio_loop.session is None:
try:
return await audio_loop.run()
except Exception as e:
print(f"Error in run(): {e}")
traceback.print_exc()
return f"Error: {str(e)}"
else:
try:
await audio_loop.send_text(text_input)
return await audio_loop.receive_audio() # Assuming receive_audio returns a string
except Exception as e:
print(f"Error after session is established: {e}")
traceback.print_exc()
return f"Error: {str(e)}"
# Gradio interface
if __name__ == "__main__":
iface = gr.Interface(
fn=transcribe_audio,
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
outputs="text",
title="Gemini Live Connect Demo with Gradio",
description="Enter text, and the model will replay same you said. This is a demo of the Gemini Live Connect API with Gradio.",
)
iface.launch() |