Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,29 +8,28 @@ from dotenv import load_dotenv
|
|
8 |
# Load environment variables
|
9 |
load_dotenv()
|
10 |
|
|
|
|
|
|
|
11 |
# Device and torch dtype selection
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
14 |
|
15 |
-
#
|
16 |
def gpu_decorator(func):
|
17 |
return func
|
18 |
|
19 |
-
# If you are on GPU and have the spaces module, you could replace gpu_decorator with spaces.GPU
|
20 |
-
# For CPU usage we simply use a no-op
|
21 |
-
# Example: from snac import spaces; gpu_decorator = spaces.GPU()
|
22 |
-
|
23 |
# Import SNAC after setting device
|
24 |
from snac import SNAC
|
25 |
|
26 |
print("Loading SNAC model...")
|
27 |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
28 |
snac_model = snac_model.to(device)
|
29 |
-
snac_model.eval() #
|
30 |
|
31 |
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
32 |
|
33 |
-
# Download only
|
34 |
snapshot_download(
|
35 |
repo_id=model_name,
|
36 |
allow_patterns=[
|
@@ -55,23 +54,30 @@ snapshot_download(
|
|
55 |
print("Loading Orpheus model...")
|
56 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype)
|
57 |
model.to(device)
|
58 |
-
model.eval() #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
60 |
print(f"Orpheus model loaded to {device}")
|
61 |
|
62 |
-
# Process text prompt into tokens with start/end markers
|
63 |
def process_prompt(prompt, voice, tokenizer, device):
|
64 |
prompt = f"{voice}: {prompt}"
|
65 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
66 |
|
67 |
-
start_token = torch.tensor([[128259]], dtype=torch.int64)
|
68 |
-
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
|
69 |
|
70 |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
71 |
attention_mask = torch.ones_like(modified_input_ids)
|
72 |
return modified_input_ids.to(device), attention_mask.to(device)
|
73 |
|
74 |
-
# Parse output tokens to extract audio codes
|
75 |
def parse_output(generated_ids):
|
76 |
token_to_find = 128257
|
77 |
token_to_remove = 128258
|
@@ -96,9 +102,8 @@ def parse_output(generated_ids):
|
|
96 |
trimmed_row = [t - 128266 for t in trimmed_row]
|
97 |
code_lists.append(trimmed_row)
|
98 |
|
99 |
-
return code_lists[0]
|
100 |
|
101 |
-
# Redistribute codes for audio generation using SNAC
|
102 |
def redistribute_codes(code_list, snac_model):
|
103 |
snac_device = next(snac_model.parameters()).device
|
104 |
layer_1, layer_2, layer_3 = [], [], []
|
@@ -116,21 +121,17 @@ def redistribute_codes(code_list, snac_model):
|
|
116 |
torch.tensor(layer_2, device=snac_device).unsqueeze(0),
|
117 |
torch.tensor(layer_3, device=snac_device).unsqueeze(0)
|
118 |
]
|
119 |
-
|
120 |
audio_hat = snac_model.decode(codes)
|
121 |
return audio_hat.detach().squeeze().cpu().numpy()
|
122 |
|
123 |
-
# Main generation function with CPU optimizations
|
124 |
@gpu_decorator
|
125 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
126 |
if not text.strip():
|
127 |
return None
|
128 |
-
|
129 |
try:
|
130 |
-
progress(0.
|
131 |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
132 |
-
|
133 |
-
progress(0.3, "Generating speech tokens...")
|
134 |
with torch.inference_mode():
|
135 |
generated_ids = model.generate(
|
136 |
input_ids=input_ids,
|
@@ -143,71 +144,73 @@ def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new
|
|
143 |
num_return_sequences=1,
|
144 |
eos_token_id=128258,
|
145 |
)
|
146 |
-
|
147 |
-
progress(0.6, "Processing speech tokens...")
|
148 |
code_list = parse_output(generated_ids)
|
149 |
-
|
150 |
-
progress(0.8, "Converting tokens to audio...")
|
151 |
audio_samples = redistribute_codes(code_list, snac_model)
|
152 |
-
|
153 |
-
return (24000, audio_samples)
|
154 |
except Exception as e:
|
155 |
print(f"Error generating speech: {e}")
|
156 |
return None
|
157 |
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
examples = [
|
160 |
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
|
161 |
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
|
162 |
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, let's just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200]
|
163 |
]
|
164 |
-
|
165 |
VOICES = ["tara", "dan", "josh", "emma"]
|
166 |
|
167 |
-
# Create Gradio interface
|
168 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
169 |
gr.Markdown("""
|
170 |
# 🎵 Orpheus Text-to-Speech
|
171 |
-
Enter
|
172 |
|
173 |
-
**Tips
|
174 |
-
-
|
175 |
-
- Longer
|
176 |
-
- Adjust the temperature slider to control variation in speech patterns.
|
177 |
""")
|
178 |
with gr.Row():
|
179 |
with gr.Column(scale=3):
|
180 |
-
text_input = gr.Textbox(
|
181 |
-
|
182 |
-
placeholder="Enter your text here...",
|
183 |
-
lines=5
|
184 |
-
)
|
185 |
-
voice = gr.Dropdown(
|
186 |
-
choices=VOICES,
|
187 |
-
value="tara",
|
188 |
-
label="Voice"
|
189 |
-
)
|
190 |
with gr.Accordion("Advanced Settings", open=False):
|
191 |
-
temperature = gr.Slider(
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
info="Nucleus sampling threshold"
|
200 |
-
)
|
201 |
-
repetition_penalty = gr.Slider(
|
202 |
-
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
203 |
-
label="Repetition Penalty",
|
204 |
-
info="Higher values discourage repetitive patterns"
|
205 |
-
)
|
206 |
-
max_new_tokens = gr.Slider(
|
207 |
-
minimum=100, maximum=2000, value=1200, step=100,
|
208 |
-
label="Max Length",
|
209 |
-
info="Maximum length of generated audio (in tokens)"
|
210 |
-
)
|
211 |
with gr.Row():
|
212 |
submit_btn = gr.Button("Generate Speech", variant="primary")
|
213 |
clear_btn = gr.Button("Clear")
|
@@ -232,7 +235,11 @@ with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
|
232 |
inputs=[],
|
233 |
outputs=[text_input, audio_output]
|
234 |
)
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
-
# Launch the Gradio app
|
237 |
if __name__ == "__main__":
|
238 |
demo.queue().launch(share=False, ssr_mode=False)
|
|
|
8 |
# Load environment variables
|
9 |
load_dotenv()
|
10 |
|
11 |
+
# Set number of threads (adjust based on your CPU cores)
|
12 |
+
torch.set_num_threads(4)
|
13 |
+
|
14 |
# Device and torch dtype selection
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
17 |
|
18 |
+
# No-op decorator for CPU mode (if you had GPU-specific decorators)
|
19 |
def gpu_decorator(func):
|
20 |
return func
|
21 |
|
|
|
|
|
|
|
|
|
22 |
# Import SNAC after setting device
|
23 |
from snac import SNAC
|
24 |
|
25 |
print("Loading SNAC model...")
|
26 |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
27 |
snac_model = snac_model.to(device)
|
28 |
+
snac_model.eval() # Set SNAC to eval mode
|
29 |
|
30 |
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
31 |
|
32 |
+
# Download only necessary files for the Orpheus model
|
33 |
snapshot_download(
|
34 |
repo_id=model_name,
|
35 |
allow_patterns=[
|
|
|
54 |
print("Loading Orpheus model...")
|
55 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype)
|
56 |
model.to(device)
|
57 |
+
model.eval() # Set the model to evaluation mode
|
58 |
+
|
59 |
+
# Optionally compile the model for PyTorch 2.0+ on CPU (if available)
|
60 |
+
if hasattr(torch, "compile") and device == "cpu":
|
61 |
+
try:
|
62 |
+
model = torch.compile(model)
|
63 |
+
print("Model compiled with torch.compile")
|
64 |
+
except Exception as e:
|
65 |
+
print("torch.compile not supported:", e)
|
66 |
+
|
67 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
68 |
print(f"Orpheus model loaded to {device}")
|
69 |
|
|
|
70 |
def process_prompt(prompt, voice, tokenizer, device):
|
71 |
prompt = f"{voice}: {prompt}"
|
72 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
73 |
|
74 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64)
|
75 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
|
76 |
|
77 |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
78 |
attention_mask = torch.ones_like(modified_input_ids)
|
79 |
return modified_input_ids.to(device), attention_mask.to(device)
|
80 |
|
|
|
81 |
def parse_output(generated_ids):
|
82 |
token_to_find = 128257
|
83 |
token_to_remove = 128258
|
|
|
102 |
trimmed_row = [t - 128266 for t in trimmed_row]
|
103 |
code_lists.append(trimmed_row)
|
104 |
|
105 |
+
return code_lists[0]
|
106 |
|
|
|
107 |
def redistribute_codes(code_list, snac_model):
|
108 |
snac_device = next(snac_model.parameters()).device
|
109 |
layer_1, layer_2, layer_3 = [], [], []
|
|
|
121 |
torch.tensor(layer_2, device=snac_device).unsqueeze(0),
|
122 |
torch.tensor(layer_3, device=snac_device).unsqueeze(0)
|
123 |
]
|
|
|
124 |
audio_hat = snac_model.decode(codes)
|
125 |
return audio_hat.detach().squeeze().cpu().numpy()
|
126 |
|
|
|
127 |
@gpu_decorator
|
128 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
129 |
if not text.strip():
|
130 |
return None
|
|
|
131 |
try:
|
132 |
+
progress(0.05, "Processing text...")
|
133 |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
134 |
+
progress(0.2, "Generating tokens...")
|
|
|
135 |
with torch.inference_mode():
|
136 |
generated_ids = model.generate(
|
137 |
input_ids=input_ids,
|
|
|
144 |
num_return_sequences=1,
|
145 |
eos_token_id=128258,
|
146 |
)
|
147 |
+
progress(0.4, "Parsing tokens...")
|
|
|
148 |
code_list = parse_output(generated_ids)
|
149 |
+
progress(0.7, "Generating audio...")
|
|
|
150 |
audio_samples = redistribute_codes(code_list, snac_model)
|
151 |
+
progress(1.0, "Done")
|
152 |
+
return (24000, audio_samples)
|
153 |
except Exception as e:
|
154 |
print(f"Error generating speech: {e}")
|
155 |
return None
|
156 |
|
157 |
+
def convert_model_to_onnx():
|
158 |
+
"""
|
159 |
+
Converts the Orpheus model to ONNX format using a dummy prompt.
|
160 |
+
The exported file will be saved as 'orpheus_model.onnx' in the working directory.
|
161 |
+
"""
|
162 |
+
dummy_prompt = "tara: Hello"
|
163 |
+
dummy_input = tokenizer(dummy_prompt, return_tensors="pt").input_ids.to(device)
|
164 |
+
file_path = "orpheus_model.onnx"
|
165 |
+
try:
|
166 |
+
# Export the model to ONNX format
|
167 |
+
torch.onnx.export(
|
168 |
+
model,
|
169 |
+
dummy_input,
|
170 |
+
file_path,
|
171 |
+
export_params=True,
|
172 |
+
opset_version=14,
|
173 |
+
input_names=["input_ids"],
|
174 |
+
output_names=["logits"],
|
175 |
+
dynamic_axes={
|
176 |
+
"input_ids": {0: "batch_size", 1: "sequence_length"},
|
177 |
+
"logits": {0: "batch_size", 1: "sequence_length"}
|
178 |
+
},
|
179 |
+
)
|
180 |
+
return f"Model converted to ONNX and saved as '{file_path}'."
|
181 |
+
except Exception as e:
|
182 |
+
return f"Error during ONNX conversion: {e}"
|
183 |
+
|
184 |
+
# UI examples and voice choices
|
185 |
examples = [
|
186 |
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
|
187 |
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
|
188 |
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, let's just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200]
|
189 |
]
|
|
|
190 |
VOICES = ["tara", "dan", "josh", "emma"]
|
191 |
|
|
|
192 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
193 |
gr.Markdown("""
|
194 |
# 🎵 Orpheus Text-to-Speech
|
195 |
+
Enter text to hear it converted to natural-sounding speech.
|
196 |
|
197 |
+
**Tips:**
|
198 |
+
- Use paralinguistic cues like `<chuckle>` or `<sigh>`.
|
199 |
+
- Longer text can produce more natural results.
|
|
|
200 |
""")
|
201 |
with gr.Row():
|
202 |
with gr.Column(scale=3):
|
203 |
+
text_input = gr.Textbox(label="Text to speak", placeholder="Enter your text...", lines=5)
|
204 |
+
voice = gr.Dropdown(choices=VOICES, value="tara", label="Voice")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
with gr.Accordion("Advanced Settings", open=False):
|
206 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, step=0.05, label="Temperature",
|
207 |
+
info="Higher values produce more varied speech")
|
208 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top P",
|
209 |
+
info="Nucleus sampling threshold")
|
210 |
+
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.05, label="Repetition Penalty",
|
211 |
+
info="Discourage repetition")
|
212 |
+
max_new_tokens = gr.Slider(minimum=100, maximum=2000, value=1200, step=100, label="Max Length",
|
213 |
+
info="Maximum generated tokens")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
with gr.Row():
|
215 |
submit_btn = gr.Button("Generate Speech", variant="primary")
|
216 |
clear_btn = gr.Button("Clear")
|
|
|
235 |
inputs=[],
|
236 |
outputs=[text_input, audio_output]
|
237 |
)
|
238 |
+
|
239 |
+
gr.Markdown("## ONNX Conversion")
|
240 |
+
onnx_btn = gr.Button("Convert Model to ONNX")
|
241 |
+
onnx_output = gr.Textbox(label="Conversion Output")
|
242 |
+
onnx_btn.click(fn=convert_model_to_onnx, inputs=[], outputs=onnx_output)
|
243 |
|
|
|
244 |
if __name__ == "__main__":
|
245 |
demo.queue().launch(share=False, ssr_mode=False)
|