File size: 8,731 Bytes
5eaee65
b35040f
 
 
 
 
5eaee65
 
b35040f
 
5eaee65
c3ffb57
5eaee65
 
 
 
 
 
 
 
 
 
 
 
c3ffb57
 
 
 
5eaee65
c3ffb57
 
 
5eaee65
c3ffb57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eaee65
 
c3ffb57
5eaee65
c3ffb57
 
b35040f
5eaee65
b35040f
 
 
5eaee65
 
 
 
 
b35040f
 
 
5eaee65
b35040f
 
 
 
5eaee65
b35040f
 
5eaee65
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eaee65
 
 
b35040f
5eaee65
 
 
 
 
 
 
 
 
 
 
b35040f
5eaee65
 
 
b35040f
5eaee65
b35040f
5eaee65
b35040f
5eaee65
 
b35040f
 
 
5eaee65
b35040f
 
 
5eaee65
b35040f
5eaee65
ec99653
 
 
 
 
 
 
 
 
 
 
5eaee65
b35040f
 
5eaee65
 
b35040f
5eaee65
 
b35040f
 
 
 
5eaee65
b35040f
 
 
5eaee65
b35040f
 
 
 
 
 
 
5eaee65
 
b35040f
5eaee65
 
 
 
 
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eaee65
b35040f
 
 
 
5eaee65
b35040f
 
 
 
5eaee65
b35040f
 
 
 
5eaee65
b35040f
 
 
 
 
 
 
5eaee65
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eaee65
b35040f
5eaee65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Device and torch dtype selection
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32

# Define a no-op decorator for CPU if needed
def gpu_decorator(func):
    return func

# If you are on GPU and have the spaces module, you could replace gpu_decorator with spaces.GPU
# For CPU usage we simply use a no-op
# Example: from snac import spaces; gpu_decorator = spaces.GPU()

# Import SNAC after setting device
from snac import SNAC

print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
snac_model.eval()  # set SNAC to eval mode

model_name = "canopylabs/orpheus-3b-0.1-ft"

# Download only model config and safetensors files
snapshot_download(
    repo_id=model_name,
    allow_patterns=[
        "config.json",
        "*.safetensors",
        "model.safetensors.index.json",
    ],
    ignore_patterns=[
        "optimizer.pt",
        "pytorch_model.bin",
        "training_args.bin",
        "scheduler.pt",
        "tokenizer.json",
        "tokenizer_config.json",
        "special_tokens_map.json",
        "vocab.json",
        "merges.txt",
        "tokenizer.*"
    ]
)

print("Loading Orpheus model...")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype)
model.to(device)
model.eval()  # set Orpheus to eval mode
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")

# Process text prompt into tokens with start/end markers
def process_prompt(prompt, voice, tokenizer, device):
    prompt = f"{voice}: {prompt}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids

    start_token = torch.tensor([[128259]], dtype=torch.int64)  # Start token
    end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)  # End tokens

    modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
    attention_mask = torch.ones_like(modified_input_ids)
    return modified_input_ids.to(device), attention_mask.to(device)

# Parse output tokens to extract audio codes
def parse_output(generated_ids):
    token_to_find = 128257
    token_to_remove = 128258

    token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
    if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx + 1:]
    else:
        cropped_tensor = generated_ids

    processed_rows = []
    for row in cropped_tensor:
        masked_row = row[row != token_to_remove]
        processed_rows.append(masked_row)

    code_lists = []
    for row in processed_rows:
        row_length = row.size(0)
        new_length = (row_length // 7) * 7
        trimmed_row = row[:new_length]
        trimmed_row = [t - 128266 for t in trimmed_row]
        code_lists.append(trimmed_row)

    return code_lists[0]  # Return first sample

# Redistribute codes for audio generation using SNAC
def redistribute_codes(code_list, snac_model):
    snac_device = next(snac_model.parameters()).device
    layer_1, layer_2, layer_3 = [], [], []
    for i in range((len(code_list) + 1) // 7):
        layer_1.append(code_list[7 * i])
        layer_2.append(code_list[7 * i + 1] - 4096)
        layer_3.append(code_list[7 * i + 2] - (2 * 4096))
        layer_3.append(code_list[7 * i + 3] - (3 * 4096))
        layer_2.append(code_list[7 * i + 4] - (4 * 4096))
        layer_3.append(code_list[7 * i + 5] - (5 * 4096))
        layer_3.append(code_list[7 * i + 6] - (6 * 4096))

    codes = [
        torch.tensor(layer_1, device=snac_device).unsqueeze(0),
        torch.tensor(layer_2, device=snac_device).unsqueeze(0),
        torch.tensor(layer_3, device=snac_device).unsqueeze(0)
    ]

    audio_hat = snac_model.decode(codes)
    return audio_hat.detach().squeeze().cpu().numpy()

# Main generation function with CPU optimizations
@gpu_decorator
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
    if not text.strip():
        return None

    try:
        progress(0.1, "Processing text...")
        input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)

        progress(0.3, "Generating speech tokens...")
        with torch.inference_mode():
            generated_ids = model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                num_return_sequences=1,
                eos_token_id=128258,
            )

        progress(0.6, "Processing speech tokens...")
        code_list = parse_output(generated_ids)

        progress(0.8, "Converting tokens to audio...")
        audio_samples = redistribute_codes(code_list, snac_model)

        return (24000, audio_samples)  # Return sample rate and numpy array audio
    except Exception as e:
        print(f"Error generating speech: {e}")
        return None

# Example inputs for the Gradio UI
examples = [
    ["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
    ["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
    ["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, let's just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200]
]

VOICES = ["tara", "dan", "josh", "emma"]

# Create Gradio interface
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
    gr.Markdown("""
    # 🎵 Orpheus Text-to-Speech
    Enter your text below and hear it converted to natural-sounding speech.
    
    **Tips for better prompts:**
    - Include paralinguistic elements like `<chuckle>`, `<sigh>`, or `uhm` for more human-like speech.
    - Longer prompts often produce more natural results.
    - Adjust the temperature slider to control variation in speech patterns.
    """)
    with gr.Row():
        with gr.Column(scale=3):
            text_input = gr.Textbox(
                label="Text to speak", 
                placeholder="Enter your text here...",
                lines=5
            )
            voice = gr.Dropdown(
                choices=VOICES, 
                value="tara", 
                label="Voice"
            )
            with gr.Accordion("Advanced Settings", open=False):
                temperature = gr.Slider(
                    minimum=0.1, maximum=1.5, value=0.6, step=0.05,
                    label="Temperature",
                    info="Higher values (0.7-1.0) create more expressive but less stable speech"
                )
                top_p = gr.Slider(
                    minimum=0.1, maximum=1.0, value=0.95, step=0.05,
                    label="Top P",
                    info="Nucleus sampling threshold"
                )
                repetition_penalty = gr.Slider(
                    minimum=1.0, maximum=2.0, value=1.1, step=0.05,
                    label="Repetition Penalty",
                    info="Higher values discourage repetitive patterns"
                )
                max_new_tokens = gr.Slider(
                    minimum=100, maximum=2000, value=1200, step=100,
                    label="Max Length",
                    info="Maximum length of generated audio (in tokens)"
                )
            with gr.Row():
                submit_btn = gr.Button("Generate Speech", variant="primary")
                clear_btn = gr.Button("Clear")
        with gr.Column(scale=2):
            audio_output = gr.Audio(label="Generated Speech", type="numpy")
    
    gr.Examples(
        examples=examples,
        inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
        outputs=audio_output,
        fn=generate_speech,
        cache_examples=True,
    )
    
    submit_btn.click(
        fn=generate_speech,
        inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
        outputs=audio_output
    )
    clear_btn.click(
        fn=lambda: (None, None),
        inputs=[],
        outputs=[text_input, audio_output]
    )

# Launch the Gradio app
if __name__ == "__main__":
    demo.queue().launch(share=False, ssr_mode=False)