File size: 7,061 Bytes
91f8d48
818e336
e6d59c3
91f8d48
e6d59c3
91f8d48
e6d59c3
818e336
224f399
91f8d48
 
 
 
 
 
4620e6c
818e336
43fec16
91f8d48
818e336
 
 
91f8d48
 
818e336
224f399
43fec16
 
 
 
224f399
818e336
 
43fec16
818e336
43fec16
818e336
224f399
43fec16
 
 
 
818e336
43fec16
818e336
 
43fec16
 
224f399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43fec16
224f399
43fec16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224f399
 
 
 
43fec16
224f399
43fec16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224f399
43fec16
 
 
 
 
 
 
 
 
91f8d48
818e336
43fec16
 
224f399
43fec16
 
224f399
 
 
 
 
 
 
 
 
 
 
 
 
 
43fec16
 
 
 
224f399
43fec16
 
 
 
 
224f399
43fec16
 
91f8d48
43fec16
 
 
224f399
 
 
818e336
 
43fec16
 
91f8d48
818e336
43fec16
818e336
 
 
91f8d48
818e336
91f8d48
818e336
91f8d48
818e336
 
91f8d48
43fec16
 
 
 
 
91f8d48
818e336
91f8d48
818e336
 
91f8d48
 
818e336
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import re
import google.generativeai as genai
from moviepy.video.io.VideoFileClip import VideoFileClip
import tempfile
import logging
import gradio as gr
from datetime import timedelta
from pydub import AudioSegment

# Suppress moviepy logs
logging.getLogger("moviepy").setLevel(logging.ERROR)

# Configure Gemini API
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
model = genai.GenerativeModel("gemini-2.0-pro-exp-02-05")

# Supported languages
SUPPORTED_LANGUAGES = [
    "Auto Detect", "English", "Spanish", "French", "German", "Italian",
    "Portuguese", "Russian", "Japanese", "Korean", "Arabic", "Hindi",
    "Chinese", "Dutch", "Turkish", "Polish", "Vietnamese", "Thai"
]

# Magic Prompts
TRANSCRIPTION_PROMPT = """Generate precise subtitles with accurate timestamps:
1. Use [HH:MM:SS.ms -> HH:MM:SS.ms] format
2. Each subtitle 3-7 words
3. Include speaker changes
4. Preserve emotional tone
5. Example:

[00:00:05.250 -> 00:00:08.100]
Example subtitle text

Return ONLY subtitles with timestamps."""

TRANSLATION_PROMPT = """Translate these subtitles to {target_language}:
1. Keep timestamps identical
2. Match text length to timing
3. Preserve technical terms
4. Use natural speech patterns

ORIGINAL:
{subtitles}

TRANSLATED:"""

def split_audio(audio_path, chunk_duration=60):
    """Split audio into smaller chunks (default: 60 seconds)"""
    audio = AudioSegment.from_wav(audio_path)
    chunks = []
    
    for i in range(0, len(audio), chunk_duration * 1000):
        chunk = audio[i:i + chunk_duration * 1000]
        chunk_path = os.path.join(tempfile.gettempdir(), f"chunk_{i//1000}.wav")
        chunk.export(chunk_path, format="wav")
        chunks.append(chunk_path)
    
    return chunks

def process_audio_chunk(chunk_path, start_time):
    """Transcribe a single audio chunk"""
    try:
        # Upload file using Gemini's File API
        uploaded_file = genai.upload_file(path=chunk_path)
        
        # Get transcription
        response = model.generate_content(
            [TRANSCRIPTION_PROMPT, uploaded_file]
        )
        
        # Adjust timestamps relative to chunk start
        adjusted_transcription = []
        for line in response.text.splitlines():
            if '->' in line:
                start, end = line.split('->')
                adjusted_start = parse_timestamp(start.strip()) + start_time
                adjusted_end = parse_timestamp(end.strip()) + start_time
                adjusted_line = f"[{format_timestamp(adjusted_start)} -> {format_timestamp(adjusted_end)}]"
                adjusted_transcription.append(adjusted_line)
            else:
                adjusted_transcription.append(line)
        
        return "\n".join(adjusted_transcription)
    
    finally:
        os.remove(chunk_path)

def parse_timestamp(timestamp_str):
    """Flexible timestamp parser"""
    clean_ts = timestamp_str.strip("[] ").replace(',', '.')
    parts = clean_ts.split(':')
    
    seconds = 0.0
    if len(parts) == 3:  # HH:MM:SS.ss
        hours, minutes, seconds_part = parts
        seconds += float(hours) * 3600
    elif len(parts) == 2:  # MM:SS.ss
        minutes, seconds_part = parts
    else:
        raise ValueError(f"Invalid timestamp: {timestamp_str}")
    
    seconds += float(minutes) * 60
    seconds += float(seconds_part)
    return seconds

def format_timestamp(seconds):
    """Convert seconds to SRT format"""
    return str(timedelta(seconds=seconds)).replace('.', ',')

def create_srt(subtitles_text):
    """Convert raw transcription to SRT format"""
    entries = re.split(r'\n{2,}', subtitles_text.strip())
    srt_output = []
    
    for idx, entry in enumerate(entries, 1):
        try:
            time_match = re.search(
                r'\[?\s*((?:\d+:)?\d+:\d+[.,]\d{3})\s*->\s*((?:\d+:)?\d+:\d+[.,]\d{3})\s*\]?',
                entry
            )
            if not time_match:
                continue
                
            start_time = parse_timestamp(time_match.group(1))
            end_time = parse_timestamp(time_match.group(2))
            text = entry.split(']', 1)[-1].strip()
            
            srt_entry = (
                f"{idx}\n"
                f"{format_timestamp(start_time)} --> {format_timestamp(end_time)}\n"
                f"{text}\n"
            )
            srt_output.append(srt_entry)
            
        except Exception as e:
            print(f"Skipping invalid entry {idx}: {str(e)}")
            continue
    
    return "\n".join(srt_output)

def process_video(video_path, source_lang, target_lang):
    """Complete processing pipeline"""
    try:
        # Extract audio
        audio_path = extract_audio(video_path)
        
        # Split into chunks
        chunks = split_audio(audio_path)
        full_transcription = []
        
        # Process each chunk
        for i, chunk_path in enumerate(chunks):
            start_time = i * 60  # 60 seconds per chunk
            chunk_transcription = process_audio_chunk(chunk_path, start_time)
            full_transcription.append(chunk_transcription)
        
        # Combine results
        srt_original = create_srt("\n\n".join(full_transcription))
        
        # Save original subtitles
        original_srt = os.path.join(tempfile.gettempdir(), "original.srt")
        with open(original_srt, "w") as f:
            f.write(srt_original)
        
        # Translate if needed
        translated_srt = None
        if target_lang != "None":
            translated_text = translate_subtitles(srt_original, target_lang)
            translated_srt = os.path.join(tempfile.gettempdir(), "translated.srt")
            with open(translated_srt, "w") as f:
                f.write(create_srt(translated_text))
        
        return original_srt, translated_srt
    
    except Exception as e:
        print(f"Processing error: {str(e)}")
        return None, None
    finally:
        if os.path.exists(audio_path):
            os.remove(audio_path)

# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft(), title="AI Subtitle Studio") as app:
    gr.Markdown("# 🎬 Professional Subtitle Generator")
    
    with gr.Row():
        video_input = gr.Video(label="Upload Video", sources=["upload"])
        with gr.Column():
            source_lang = gr.Dropdown(
                label="Source Language",
                choices=SUPPORTED_LANGUAGES,
                value="Auto Detect"
            )
            target_lang = gr.Dropdown(
                label="Translate To",
                choices=["None"] + SUPPORTED_LANGUAGES[1:],
                value="None"
            )
            process_btn = gr.Button("Generate", variant="primary")
    
    with gr.Row():
        original_sub = gr.File(label="Original Subtitles")
        translated_sub = gr.File(label="Translated Subtitles")
    
    process_btn.click(
        process_video,
        inputs=[video_input, source_lang, target_lang],
        outputs=[original_sub, translated_sub]
    )

if __name__ == "__main__":
    app.launch(server_port=7860, share=True)