Athspi's picture
Update app.py
63a0fca verified
raw
history blame
5.71 kB
import os
import numpy as np
from flask import Flask, request, jsonify, send_file, send_from_directory
import google.generativeai as genai
from gtts import gTTS, lang
import tempfile
import soundfile as sf
from kokoro import KPipeline
from werkzeug.utils import secure_filename
from flask_cors import CORS
app = Flask(__name__, static_folder='static')
CORS(app)
app.config['MAX_CONTENT_LENGTH'] = 100 * 1024 * 1024 # 100MB limit
# Configure Gemini API
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
raise ValueError("GEMINI_API_KEY environment variable not set")
genai.configure(api_key=GEMINI_API_KEY)
# Language configurations
KOKORO_LANGUAGES = {
"American English": "a",
"British English": "b",
"Mandarin Chinese": "z",
"Spanish": "e",
"French": "f",
"Hindi": "h",
"Italian": "i",
"Brazilian Portuguese": "p"
}
GTTS_LANGUAGES = lang.tts_langs()
GTTS_LANGUAGES['ja'] = 'Japanese'
SUPPORTED_LANGUAGES = sorted(
list(set(list(KOKORO_LANGUAGES.keys()) + list(GTTS_LANGUAGES.values()))
)
MAX_FILE_SIZE = 50 * 1024 * 1024 # 50MB Gemini limit
CHUNK_SIZE = 20 * 1024 * 1024 # 20MB chunks
def process_large_audio(file_path):
"""Process large audio files in chunks"""
try:
file_size = os.path.getsize(file_path)
if file_size <= MAX_FILE_SIZE:
# Process small files normally
uploaded_file = genai.upload_file(file_path)
return [uploaded_file]
# Split large files into chunks
chunks = []
with open(file_path, 'rb') as f:
chunk_num = 0
while chunk_data := f.read(CHUNK_SIZE):
chunk_path = f"{file_path}_chunk_{chunk_num}"
with open(chunk_path, 'wb') as chunk_file:
chunk_file.write(chunk_data)
chunks.append(genai.upload_file(chunk_path))
chunk_num += 1
return chunks
except Exception as e:
raise RuntimeError(f"File processing failed: {str(e)}")
def cleanup_files(file_path, chunks):
"""Cleanup temporary files and uploaded chunks"""
try:
if os.path.exists(file_path):
os.remove(file_path)
for chunk in chunks:
if os.path.exists(chunk.name):
os.remove(chunk.name)
chunk.delete()
except Exception as e:
app.logger.error(f"Cleanup error: {str(e)}")
@app.route('/translate', methods=['POST'])
def translate_audio():
temp_path = None
uploaded_chunks = []
try:
if 'audio' not in request.files:
return jsonify({'error': 'No audio file uploaded'}), 400
audio_file = request.files['audio']
target_language = request.form.get('language', 'English')
if not audio_file or audio_file.filename == '':
return jsonify({'error': 'Invalid audio file'}), 400
# Save to temp file
temp_path = os.path.join(tempfile.gettempdir(), secure_filename(audio_file.filename))
audio_file.save(temp_path)
# Process file in chunks if needed
uploaded_chunks = process_large_audio(temp_path)
# Transcribe chunks
model = genai.GenerativeModel("gemini-2.0-flash")
transcripts = []
for chunk in uploaded_chunks:
response = model.generate_content(
["Transcribe this audio chunk verbatim. Respond only with the transcription:", chunk]
)
transcripts.append(response.text.strip())
chunk.delete()
transcription = " ".join(transcripts)
# Translation
prompt = f"Translate to {target_language} preserving meaning:\n\n{transcription}"
response = model.generate_content(prompt)
translated_text = response.text.strip()
# TTS Generation
if target_language in KOKORO_LANGUAGES:
# Kokoro processing
lang_code = KOKORO_LANGUAGES[target_language]
pipeline = KPipeline(lang_code=lang_code)
generator = pipeline(translated_text, voice="af_heart", speed=1)
audio_segments = []
for _, _, audio in generator:
if audio is not None:
audio_segments.append(audio)
if not audio_segments:
raise ValueError("No audio generated by Kokoro")
audio_data = np.concatenate(audio_segments)
_, output_path = tempfile.mkstemp(suffix=".wav")
sf.write(output_path, audio_data, 24000)
else:
# gTTS processing
lang_code = next((k for k, v in GTTS_LANGUAGES.items() if v == target_language), 'en')
tts = gTTS(translated_text, lang=lang_code)
_, output_path = tempfile.mkstemp(suffix=".mp3")
tts.save(output_path)
return jsonify({
'transcription': transcription,
'translation': translated_text,
'audio_url': f'/download/{os.path.basename(output_path)}'
})
except Exception as e:
app.logger.error(f"Processing error: {str(e)}")
return jsonify({'error': str(e)}), 500
finally:
cleanup_files(temp_path, uploaded_chunks)
@app.route('/download/<filename>')
def download_file(filename):
try:
return send_file(
os.path.join(tempfile.gettempdir(), filename),
mimetype="audio/mpeg",
as_attachment=True,
download_name=f"translated_{filename}"
)
except Exception as e:
return jsonify({'error': str(e)}), 404
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)