Ateeqq commited on
Commit
2b933d2
·
verified ·
1 Parent(s): 27b4f7a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -87
app.py CHANGED
@@ -10,12 +10,9 @@ MODEL_IDENTIFIER = r"Ateeqq/ai-vs-human-image-detector"
10
  DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
 
12
  # --- Suppress specific warnings ---
13
- # Suppress the specific PIL warning about potential decompression bombs
14
  warnings.filterwarnings("ignore", message="Possibly corrupt EXIF data.")
15
- # Suppress transformers warning about loading weights without specifying revision
16
  warnings.filterwarnings("ignore", message=".*You are using the default legacy behaviour.*")
17
 
18
-
19
  # --- Load Model and Processor (Load once at startup) ---
20
  print(f"Using device: {DEVICE}")
21
  print(f"Loading processor from: {MODEL_IDENTIFIER}")
@@ -28,66 +25,43 @@ try:
28
  print("Model and processor loaded successfully.")
29
  except Exception as e:
30
  print(f"FATAL: Error loading model or processor: {e}")
31
- # If the model fails to load, we raise an exception to stop the app
32
  raise gr.Error(f"Failed to load the model: {e}. Cannot start the application.") from e
33
 
34
  # --- Prediction Function ---
35
  def classify_image(image_pil):
36
- """
37
- Classifies an image as AI-generated or Human-made.
38
-
39
- Args:
40
- image_pil (PIL.Image.Image): Input image in PIL format.
41
-
42
- Returns:
43
- dict: A dictionary mapping class labels ('ai', 'human') to their
44
- confidence scores. Returns an empty dict if input is None.
45
- """
46
  if image_pil is None:
47
- # Handle case where the user clears the image input
48
  print("Warning: No image provided.")
49
- return {} # Return empty dict, Gradio Label handles this
50
 
51
  print("Processing image...")
52
  try:
53
- # Ensure image is RGB
54
  image = image_pil.convert("RGB")
55
-
56
- # Preprocess using the loaded processor
57
  inputs = processor(images=image, return_tensors="pt").to(DEVICE)
58
 
59
- # Perform inference
60
  print("Running inference...")
61
  with torch.no_grad():
62
  outputs = model(**inputs)
63
  logits = outputs.logits
64
 
65
- # Get probabilities using softmax
66
- # outputs.logits is shape [1, num_labels], softmax over the last dim
67
- probabilities = torch.softmax(logits, dim=-1)[0] # Get probabilities for the first (and only) image
68
-
69
- # Create a dictionary of label -> score
70
  results = {}
71
  for i, prob in enumerate(probabilities):
72
  label = model.config.id2label[i]
73
- results[label] = round(prob.item(), 4) # Round for cleaner display
74
 
75
  print(f"Prediction results: {results}")
76
  return results
77
-
78
  except Exception as e:
79
  print(f"Error during prediction: {e}")
80
- # Return error in the format expected by gr.Label
81
- # Provide a user-friendly error message in the output
82
  return {"Error": f"Processing failed. Please try again or use a different image."}
83
 
84
  # --- Define Example Images ---
85
  example_dir = "examples"
86
  example_images = []
87
- if os.path.exists(example_dir) and os.listdir(example_dir): # Check if dir exists AND is not empty
88
  for img_name in os.listdir(example_dir):
89
  if img_name.lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
90
- example_images.append(os.path.join(example_dir, img_name))
91
  if example_images:
92
  print(f"Found examples: {example_images}")
93
  else:
@@ -95,92 +69,94 @@ if os.path.exists(example_dir) and os.listdir(example_dir): # Check if dir exist
95
  else:
96
  print("No 'examples' directory found or it's empty. Examples will not be shown.")
97
 
98
-
99
- # --- Custom CSS ---
100
  css = """
101
- body { font-family: 'Inter', sans-serif; } /* Use a clean sans-serif font */
102
 
103
  /* Style the main title */
104
  #app-title {
105
  text-align: center;
106
  font-weight: bold;
107
- font-size: 2.5em; /* Larger title */
108
- margin-bottom: 5px; /* Reduced space below title */
109
- color: #2c3e50; /* Darker color */
110
  }
111
 
112
  /* Style the description */
113
  #app-description {
114
  text-align: center;
115
  font-size: 1.1em;
116
- margin-bottom: 25px; /* More space below description */
117
- color: #576574; /* Subdued color */
118
  }
119
- #app-description code { /* Style model name */
120
  font-weight: bold;
121
- background-color: #f1f2f6;
122
  padding: 2px 5px;
123
  border-radius: 4px;
 
124
  }
125
  #app-description strong { /* Style device name */
126
- color: #1abc9c; /* Highlight color for device */
 
127
  }
128
 
129
- /* Style the results area */
130
- #prediction-label .label-name { font-weight: bold; font-size: 1.1em; }
131
- #prediction-label .confidence { font-size: 1em; }
132
-
133
  /* Style the results heading */
134
  #results-heading {
135
  text-align: center;
136
- font-size: 1.2em; /* Slightly larger heading for results */
137
- margin-bottom: 10px; /* Space below heading */
138
- color: #34495e; /* Match other heading colors */
139
  }
140
 
141
- /* Style the examples section */
142
- .gradio-container .examples-container { padding-top: 15px; }
143
- .gradio-container .examples-header { font-size: 1.1em; font-weight: bold; margin-bottom: 10px; color: #34495e; }
144
-
145
- /* Add a subtle border/shadow to input/output columns for definition */
146
  #input-column, #output-column {
147
- border: 1px solid #e0e0e0;
148
- border-radius: 12px; /* More rounded corners */
149
  padding: 20px;
150
- box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05); /* Subtle shadow */
151
- background-color: #ffffff; /* Ensure white background */
152
  }
153
 
 
 
 
 
 
 
 
154
  /* Footer styling */
155
  #app-footer {
156
  margin-top: 40px;
157
  padding-top: 20px;
158
- border-top: 1px solid #dfe6e9;
159
  text-align: center;
160
  font-size: 0.9em;
161
- color: #8395a7;
 
 
 
 
 
 
 
162
  }
163
- #app-footer a { color: #3498db; text-decoration: none; }
164
- #app-footer a:hover { text-decoration: underline; }
165
  """
166
 
167
  # --- Gradio Interface using Blocks and Theme ---
168
- # Choose a theme: gr.themes.Soft(), gr.themes.Monochrome(), gr.themes.Glass(), etc.
169
  theme = gr.themes.Soft(
170
- primary_hue="emerald", # Color scheme based on emerald green
171
  secondary_hue="blue",
172
  neutral_hue="slate",
173
- radius_size=gr.themes.sizes.radius_lg, # Larger corner radius
174
- spacing_size=gr.themes.sizes.spacing_lg, # More spacing
175
- ).set(
176
- # Further fine-tuning
177
- body_background_fill="#f8f9fa", # Very light grey background
178
- block_radius="12px",
179
- )
180
 
181
 
182
  with gr.Blocks(theme=theme, css=css) as iface:
183
- # Title and Description using Markdown for better formatting
184
  gr.Markdown("# AI vs Human Image Detector", elem_id="app-title")
185
  gr.Markdown(
186
  f"Upload an image to classify if it was likely generated by AI or created by a human. "
@@ -188,59 +164,58 @@ with gr.Blocks(theme=theme, css=css) as iface:
188
  elem_id="app-description"
189
  )
190
 
191
- # Main layout with Input and Output side-by-side
192
- with gr.Row(variant='panel'): # 'panel' adds a light border/background
193
  with gr.Column(scale=1, min_width=300, elem_id="input-column"):
194
  image_input = gr.Image(
195
  type="pil",
196
  label="🖼️ Upload Your Image",
197
  sources=["upload", "webcam", "clipboard"],
198
- height=400, # Adjust height as needed
199
  )
200
- submit_button = gr.Button("🔍 Classify Image", variant="primary") # Make button prominent
201
 
202
  with gr.Column(scale=1, min_width=300, elem_id="output-column"):
203
- # Use elem_id and target with CSS for styling
204
  gr.Markdown("📊 **Prediction Results**", elem_id="results-heading")
205
  result_output = gr.Label(
206
  num_top_classes=2,
207
  label="Classification",
208
  elem_id="prediction-label"
 
209
  )
210
 
211
  # Examples Section
212
- if example_images: # Only show examples if they exist and list is not empty
213
  gr.Examples(
214
  examples=example_images,
215
  inputs=image_input,
216
  outputs=result_output,
217
  fn=classify_image,
218
- cache_examples=True, # Caching is good for static examples
219
  label="✨ Click an Example to Try!"
 
220
  )
221
 
222
  # Footer / Article section
223
- gr.Markdown(
224
- """
225
  ---
226
  This application uses a fine-tuned [SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip) vision model
227
  specifically trained to differentiate between images generated by Artificial Intelligence and those created by humans.
228
 
229
- You can find the model card here: <a href='https://huggingface.co/{model_id}' target='_blank'>{model_id}</a>
230
 
231
  Fine tuning code available at [https://exnrt.com/blog/ai/fine-tuning-siglip2/](https://exnrt.com/blog/ai/fine-tuning-siglip2/).
232
- """.format(model_id=MODEL_IDENTIFIER),
233
  elem_id="app-footer"
234
  )
235
 
236
- # Connect the button click or image change to the prediction function
237
- # Use api_name for potential API usage later
238
  submit_button.click(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_button")
239
  image_input.change(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_change")
240
 
241
-
242
  # --- Launch the App ---
243
  if __name__ == "__main__":
244
  print("Launching Gradio interface...")
245
- iface.launch() # Add share=True for temporary public link if needed: iface.launch(share=True)
246
  print("Gradio interface launched.")
 
10
  DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
 
12
  # --- Suppress specific warnings ---
 
13
  warnings.filterwarnings("ignore", message="Possibly corrupt EXIF data.")
 
14
  warnings.filterwarnings("ignore", message=".*You are using the default legacy behaviour.*")
15
 
 
16
  # --- Load Model and Processor (Load once at startup) ---
17
  print(f"Using device: {DEVICE}")
18
  print(f"Loading processor from: {MODEL_IDENTIFIER}")
 
25
  print("Model and processor loaded successfully.")
26
  except Exception as e:
27
  print(f"FATAL: Error loading model or processor: {e}")
 
28
  raise gr.Error(f"Failed to load the model: {e}. Cannot start the application.") from e
29
 
30
  # --- Prediction Function ---
31
  def classify_image(image_pil):
 
 
 
 
 
 
 
 
 
 
32
  if image_pil is None:
 
33
  print("Warning: No image provided.")
34
+ return {}
35
 
36
  print("Processing image...")
37
  try:
 
38
  image = image_pil.convert("RGB")
 
 
39
  inputs = processor(images=image, return_tensors="pt").to(DEVICE)
40
 
 
41
  print("Running inference...")
42
  with torch.no_grad():
43
  outputs = model(**inputs)
44
  logits = outputs.logits
45
 
46
+ probabilities = torch.softmax(logits, dim=-1)[0]
 
 
 
 
47
  results = {}
48
  for i, prob in enumerate(probabilities):
49
  label = model.config.id2label[i]
50
+ results[label] = round(prob.item(), 4)
51
 
52
  print(f"Prediction results: {results}")
53
  return results
 
54
  except Exception as e:
55
  print(f"Error during prediction: {e}")
 
 
56
  return {"Error": f"Processing failed. Please try again or use a different image."}
57
 
58
  # --- Define Example Images ---
59
  example_dir = "examples"
60
  example_images = []
61
+ if os.path.exists(example_dir) and os.listdir(example_dir):
62
  for img_name in os.listdir(example_dir):
63
  if img_name.lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
64
+ example_images.append(os.path.join(example_dir, img_name))
65
  if example_images:
66
  print(f"Found examples: {example_images}")
67
  else:
 
69
  else:
70
  print("No 'examples' directory found or it's empty. Examples will not be shown.")
71
 
72
+ # --- Custom CSS for Dark Theme Adjustments ---
73
+ # Minimal CSS - let the dark theme handle most things
74
  css = """
75
+ body { font-family: 'Inter', sans-serif; }
76
 
77
  /* Style the main title */
78
  #app-title {
79
  text-align: center;
80
  font-weight: bold;
81
+ font-size: 2.5em;
82
+ margin-bottom: 5px;
83
+ /* color removed - let theme handle */
84
  }
85
 
86
  /* Style the description */
87
  #app-description {
88
  text-align: center;
89
  font-size: 1.1em;
90
+ margin-bottom: 25px;
91
+ /* color removed - let theme handle */
92
  }
93
+ #app-description code { /* Style model name - theme might handle this, but can force */
94
  font-weight: bold;
95
+ background-color: rgba(255, 255, 255, 0.1); /* Slightly lighter background for code */
96
  padding: 2px 5px;
97
  border-radius: 4px;
98
+ color: #c5f7dc; /* Light green text for code block */
99
  }
100
  #app-description strong { /* Style device name */
101
+ color: #2dd4bf; /* Brighter teal/emerald for dark theme */
102
+ font-weight: bold;
103
  }
104
 
 
 
 
 
105
  /* Style the results heading */
106
  #results-heading {
107
  text-align: center;
108
+ font-size: 1.2em;
109
+ margin-bottom: 10px;
110
+ /* color removed - let theme handle */
111
  }
112
 
113
+ /* Add some definition to input/output columns if needed */
 
 
 
 
114
  #input-column, #output-column {
115
+ border: 1px solid #4b5563; /* Darker border for dark theme */
116
+ border-radius: 12px;
117
  padding: 20px;
118
+ box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); /* Subtle shadow, works on dark too */
119
+ /* background-color removed - let theme handle */
120
  }
121
 
122
+ /* Ensure label text inside columns is readable */
123
+ #prediction-label .label-name { font-weight: bold; font-size: 1.1em; }
124
+ #prediction-label .confidence { font-size: 1em; }
125
+ /* Theme should make label text light, but force if needed: */
126
+ /* #prediction-label { color: #e5e7eb; } */
127
+
128
+
129
  /* Footer styling */
130
  #app-footer {
131
  margin-top: 40px;
132
  padding-top: 20px;
133
+ border-top: 1px solid #374151; /* Darker border for footer */
134
  text-align: center;
135
  font-size: 0.9em;
136
+ /* color removed - let theme handle */
137
+ }
138
+ #app-footer a {
139
+ color: #60a5fa; /* Lighter blue for links */
140
+ text-decoration: none;
141
+ }
142
+ #app-footer a:hover {
143
+ text-decoration: underline;
144
  }
 
 
145
  """
146
 
147
  # --- Gradio Interface using Blocks and Theme ---
148
+ # Apply .dark() to the theme
149
  theme = gr.themes.Soft(
150
+ primary_hue="emerald",
151
  secondary_hue="blue",
152
  neutral_hue="slate",
153
+ radius_size=gr.themes.sizes.radius_lg,
154
+ spacing_size=gr.themes.sizes.spacing_lg,
155
+ ).dark() # <<< APPLY DARK MODE HERE
 
 
 
 
156
 
157
 
158
  with gr.Blocks(theme=theme, css=css) as iface:
159
+ # Title and Description
160
  gr.Markdown("# AI vs Human Image Detector", elem_id="app-title")
161
  gr.Markdown(
162
  f"Upload an image to classify if it was likely generated by AI or created by a human. "
 
164
  elem_id="app-description"
165
  )
166
 
167
+ # Main layout
168
+ with gr.Row(variant='panel'): # Panel might look different in dark theme, adjust if needed
169
  with gr.Column(scale=1, min_width=300, elem_id="input-column"):
170
  image_input = gr.Image(
171
  type="pil",
172
  label="🖼️ Upload Your Image",
173
  sources=["upload", "webcam", "clipboard"],
174
+ height=400,
175
  )
176
+ submit_button = gr.Button("🔍 Classify Image", variant="primary")
177
 
178
  with gr.Column(scale=1, min_width=300, elem_id="output-column"):
 
179
  gr.Markdown("📊 **Prediction Results**", elem_id="results-heading")
180
  result_output = gr.Label(
181
  num_top_classes=2,
182
  label="Classification",
183
  elem_id="prediction-label"
184
+ # The theme should now correctly style the label text for dark mode
185
  )
186
 
187
  # Examples Section
188
+ if example_images:
189
  gr.Examples(
190
  examples=example_images,
191
  inputs=image_input,
192
  outputs=result_output,
193
  fn=classify_image,
194
+ cache_examples=True,
195
  label="✨ Click an Example to Try!"
196
+ # Examples appearance will also adapt to the dark theme
197
  )
198
 
199
  # Footer / Article section
200
+ # Removed explicit model ID formatting from Markdown string, use f-string
201
+ gr.Markdown(f"""
202
  ---
203
  This application uses a fine-tuned [SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip) vision model
204
  specifically trained to differentiate between images generated by Artificial Intelligence and those created by humans.
205
 
206
+ You can find the model card here: <a href='https://huggingface.co/{MODEL_IDENTIFIER}' target='_blank'>{MODEL_IDENTIFIER}</a>
207
 
208
  Fine tuning code available at [https://exnrt.com/blog/ai/fine-tuning-siglip2/](https://exnrt.com/blog/ai/fine-tuning-siglip2/).
209
+ """,
210
  elem_id="app-footer"
211
  )
212
 
213
+ # Connect events
 
214
  submit_button.click(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_button")
215
  image_input.change(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_change")
216
 
 
217
  # --- Launch the App ---
218
  if __name__ == "__main__":
219
  print("Launching Gradio interface...")
220
+ iface.launch()
221
  print("Gradio interface launched.")