File size: 2,643 Bytes
f5ed9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import { WebSocket } from 'ws';
import { handleMessage } from './messageHandler';
import {
  getAvailableEmbeddingModelProviders,
  getAvailableChatModelProviders,
} from '../lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import type { IncomingMessage } from 'http';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';

export const handleConnection = async (

  ws: WebSocket,

  request: IncomingMessage,

) => {
  const searchParams = new URL(request.url, `http://${request.headers.host}`)
    .searchParams;

  const [chatModelProviders, embeddingModelProviders] = await Promise.all([
    getAvailableChatModelProviders(),
    getAvailableEmbeddingModelProviders(),
  ]);

  const chatModelProvider =
    searchParams.get('chatModelProvider') || Object.keys(chatModelProviders)[0];
  const chatModel =
    searchParams.get('chatModel') ||
    Object.keys(chatModelProviders[chatModelProvider])[0];

  const embeddingModelProvider =
    searchParams.get('embeddingModelProvider') ||
    Object.keys(embeddingModelProviders)[0];
  const embeddingModel =
    searchParams.get('embeddingModel') ||
    Object.keys(embeddingModelProviders[embeddingModelProvider])[0];

  let llm: BaseChatModel | undefined;
  let embeddings: Embeddings | undefined;

  if (
    chatModelProviders[chatModelProvider] &&
    chatModelProviders[chatModelProvider][chatModel] &&
    chatModelProvider != 'custom_openai'
  ) {
    llm = chatModelProviders[chatModelProvider][chatModel] as
      | BaseChatModel
      | undefined;
  } else if (chatModelProvider == 'custom_openai') {
    llm = new ChatOpenAI({
      modelName: chatModel,
      openAIApiKey: searchParams.get('openAIApiKey'),
      temperature: 0.7,
      configuration: {
        baseURL: searchParams.get('openAIBaseURL'),
      },
    });
  }

  if (
    embeddingModelProviders[embeddingModelProvider] &&
    embeddingModelProviders[embeddingModelProvider][embeddingModel]
  ) {
    embeddings = embeddingModelProviders[embeddingModelProvider][
      embeddingModel
    ] as Embeddings | undefined;
  }

  if (!llm || !embeddings) {
    ws.send(
      JSON.stringify({
        type: 'error',
        data: 'Invalid LLM or embeddings model selected',
      }),
    );
    ws.close();
  }

  ws.on(
    'message',
    async (message) =>
      await handleMessage(message.toString(), ws, llm, embeddings),
  );

  ws.on('close', () => logger.debug('Connection closed'));
};