Ashendilantha's picture
Update app.py
06fdfd1 verified
import streamlit as st
import pandas as pd
import re
import string
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from transformers import pipeline
from PIL import Image
import matplotlib.pyplot as plt
from wordcloud import WordCloud
# Download required NLTK data
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('omw-1.4')
# Load Models
news_classifier = pipeline("text-classification", model="Oneli/News_Classification")
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
# Label Mapping
label_mapping = {
"LABEL_0": "Business",
"LABEL_1": "Opinion",
"LABEL_2": "Political Gossip",
"LABEL_3": "Sports",
"LABEL_4": "World News"
}
# Store classified article for QA
context_storage = {"context": "", "bulk_context": "", "num_articles": 0}
# Text Cleaning Functions
def clean_text(text):
text = text.lower()
text = re.sub(f"[{string.punctuation}]", "", text) # Remove punctuation
text = re.sub(r"[^a-zA-Z0-9\s]", "", text) # Remove special characters
words = text.split() # Tokenization without Punkt
words = [word for word in words if word not in stopwords.words("english")] # Remove stopwords
lemmatizer = WordNetLemmatizer()
words = [lemmatizer.lemmatize(word) for word in words] # Lemmatize tokens
return " ".join(words)
# Define the functions
def classify_text(text):
cleaned_text = clean_text(text)
result = news_classifier(cleaned_text)[0]
category = label_mapping.get(result['label'], "Unknown")
confidence = round(result['score'] * 100, 2)
# Store context for QA
context_storage["context"] = cleaned_text
return category, f"Confidence: {confidence}%"
def classify_csv(file):
try:
df = pd.read_csv(file, encoding="utf-8")
text_column = df.columns[0] # Assume first column is the text column
df[text_column] = df[text_column].astype(str).apply(clean_text) # Clean text column
df["Decoded Prediction"] = df[text_column].apply(lambda x: label_mapping.get(news_classifier(x)[0]['label'], "Unknown"))
df["Confidence"] = df[text_column].apply(lambda x: round(news_classifier(x)[0]['score'] * 100, 2))
# Store all text as a single context for QA
context_storage["bulk_context"] = " ".join(df[text_column].dropna().astype(str).tolist())
context_storage["num_articles"] = len(df)
output_file = "output.csv"
df.to_csv(output_file, index=False)
return df, output_file
except Exception as e:
return None, f"Error: {str(e)}"
def chatbot_response(history, user_input, text_input=None, file_input=None):
user_input = user_input.lower()
context = ""
if text_input:
context += text_input
if file_input:
df, _ = classify_csv(file_input)
context += context_storage["bulk_context"]
if context:
with st.spinner("Finding answer..."):
result = qa_pipeline(question=user_input, context=context)
answer = result["answer"]
history.append([user_input, answer])
return history, answer
# Function to generate word cloud from the 'content' column (from output CSV)
def generate_word_cloud_from_output(df):
# Assuming 'content' column is the first column after processing
content_text = " ".join(df["content"].dropna().astype(str).tolist())
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(content_text)
return wordcloud
# Function to generate bar graph for decoded predictions
def generate_bar_graph(df):
prediction_counts = df["Decoded Prediction"].value_counts()
fig, ax = plt.subplots(figsize=(10, 6))
prediction_counts.plot(kind='bar', ax=ax, color='skyblue')
ax.set_title('Frequency of Decoded Predictions', fontsize=16)
ax.set_xlabel('Category', fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
st.pyplot(fig)
# Streamlit App Layout
st.set_page_config(page_title="News Classifier", page_icon="πŸ“°")
# Load image
cover_image = Image.open("cover.png") # Ensure this image exists
# Display image
st.image(cover_image, use_container_width=True)
# Custom styled caption
st.markdown(
"<h2 style='text-align: center; font-size: 32px;'>News Classifier πŸ“’</h2>",
unsafe_allow_html=True
)
# Section for Single Article Classification
st.subheader("πŸ“° Single Article Classification")
text_input = st.text_area("Enter News Text", placeholder="Type or paste news content here...")
if st.button("πŸ” Classify"):
if text_input:
category, confidence = classify_text(text_input)
st.write(f"Predicted Category: {category}")
st.write(f"Confidence Level: {confidence}")
# Generate word cloud for the cleaned text input
wordcloud = generate_word_cloud_from_output(pd.DataFrame({"content": [text_input]})) # Create a DataFrame for single input
st.image(wordcloud.to_array(), caption="Word Cloud for Text Input", use_container_width=True)
else:
st.warning("Please enter some text to classify.")
# Section for Bulk CSV Classification
st.subheader("πŸ“‚ Bulk Classification (CSV)")
file_input = st.file_uploader("Upload CSV File", type="csv")
if file_input:
df, output_file = classify_csv(file_input)
if df is not None:
st.dataframe(df)
st.download_button(
label="Download Processed CSV",
data=open(output_file, 'rb').read(),
file_name=output_file,
mime="text/csv"
)
# Generate word cloud for the 'content' column of the processed CSV data
wordcloud = generate_word_cloud_from_output(df)
st.image(wordcloud.to_array(), caption="Word Cloud for CSV Content", use_container_width=True)
# Generate bar graph for decoded predictions frequency
generate_bar_graph(df)
else:
st.error(f"Error processing file: {output_file}")
# Section for Chatbot Interaction
st.subheader("πŸ’¬ AI Chat Assistant")
history = []
user_input = st.text_input("Ask about news classification or topics", placeholder="Type a message...")
source_toggle = st.radio("Select Context Source", ["Single Article", "Bulk Classification"])
if st.button("βœ‰ Send"):
if not user_input and not file_input:
st.warning("Please upload your file or provide text input for QA.")
else:
history, bot_response = chatbot_response(
history,
user_input,
text_input=text_input if source_toggle == "Single Article" else None,
file_input=file_input if source_toggle == "Bulk Classification" else None
)
st.write("Chatbot Response:")
for q, a in history:
st.write(f"Q: {q}")
st.write(f"A: {a}")