Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
4 |
+
from peft import PeftModel
|
5 |
+
|
6 |
+
def main():
|
7 |
+
st.title("Math Meme Repair (LoRA-Fine-Tuned)")
|
8 |
+
|
9 |
+
st.markdown("""
|
10 |
+
**Instructions**:
|
11 |
+
1. Enter your incorrect math meme in the format:
|
12 |
+
```
|
13 |
+
Math Meme Correction:
|
14 |
+
Incorrect: 5-3-1 = 3?
|
15 |
+
Correct:
|
16 |
+
```
|
17 |
+
2. Click **Repair Math Meme** to generate a corrected explanation.
|
18 |
+
|
19 |
+
**Note**: This is running on CPU, so it may be slow and memory-intensive for a 7B model.
|
20 |
+
""")
|
21 |
+
|
22 |
+
# 1. Load the base model from Hugging Face
|
23 |
+
model_name = "deepseek-ai/deepseek-math-7b-base"
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
|
26 |
+
# If your CPU doesn't support float16, switch to float32.
|
27 |
+
# (float16 might not work well on certain CPUs)
|
28 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
model_name,
|
30 |
+
torch_dtype=torch.float32 # CPU-friendly dtype
|
31 |
+
)
|
32 |
+
base_model = base_model.to("cpu") # We'll run on CPU
|
33 |
+
|
34 |
+
# 2. Load your LoRA adapter (local directory with adapter_config.json & adapter_model.safetensors)
|
35 |
+
adapter_dir = "trained-math-meme-model"
|
36 |
+
model = PeftModel.from_pretrained(base_model, adapter_dir)
|
37 |
+
model = model.to("cpu")
|
38 |
+
|
39 |
+
# 3. Configure generation
|
40 |
+
generation_config = GenerationConfig(
|
41 |
+
max_new_tokens=100,
|
42 |
+
temperature=0.7,
|
43 |
+
top_p=0.7,
|
44 |
+
pad_token_id=tokenizer.eos_token_id
|
45 |
+
)
|
46 |
+
|
47 |
+
# 4. User input area
|
48 |
+
user_input = st.text_area(
|
49 |
+
"Enter your math meme input:",
|
50 |
+
value="Math Meme Correction:\nIncorrect: 5-3-1 = 3?\nCorrect:"
|
51 |
+
)
|
52 |
+
|
53 |
+
if st.button("Repair Math Meme"):
|
54 |
+
if user_input.strip() == "":
|
55 |
+
st.warning("Please enter a math meme input following the required format.")
|
56 |
+
else:
|
57 |
+
with torch.no_grad():
|
58 |
+
# Tokenize on CPU
|
59 |
+
encoding = tokenizer(user_input, return_tensors="pt").to("cpu")
|
60 |
+
outputs = model.generate(
|
61 |
+
input_ids=encoding.input_ids,
|
62 |
+
attention_mask=encoding.attention_mask,
|
63 |
+
max_new_tokens=generation_config.max_new_tokens,
|
64 |
+
temperature=generation_config.temperature,
|
65 |
+
top_p=generation_config.top_p,
|
66 |
+
pad_token_id=generation_config.pad_token_id
|
67 |
+
)
|
68 |
+
|
69 |
+
# Decode and display
|
70 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
71 |
+
st.subheader("Repaired Math Meme")
|
72 |
+
st.write(result)
|
73 |
+
|
74 |
+
st.markdown("\n**Error Rating:** 90% sass, 10% patience (on CPU)")
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
main()
|