Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
import io
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from nnsight import LanguageModel
|
9 |
+
from typing import List
|
10 |
+
import pandas as pd
|
11 |
+
|
12 |
+
# Set up the API key for nnsight
|
13 |
+
from nnsight import CONFIG
|
14 |
+
import os
|
15 |
+
api_key = os.getenv('NNSIGHT_API_KEY')
|
16 |
+
CONFIG.set_default_api_key(api_key)
|
17 |
+
|
18 |
+
# Load the Language Model
|
19 |
+
llama = LanguageModel("meta-llama/Meta-Llama-3.1-8B", device="cuda")
|
20 |
+
|
21 |
+
#placeholder for reset
|
22 |
+
prompts_with_probs = pd.DataFrame(
|
23 |
+
{
|
24 |
+
"prompt": ['waiting for data'],
|
25 |
+
"layer": [0],
|
26 |
+
"results": ['hi'],
|
27 |
+
"probs": [0],
|
28 |
+
"expected": ['hi'],
|
29 |
+
})
|
30 |
+
prompts_with_ranks = pd.DataFrame(
|
31 |
+
{
|
32 |
+
"prompt": ['waiting for data'],
|
33 |
+
"layer": [0],
|
34 |
+
"results": ['hi'],
|
35 |
+
"ranks": [0],
|
36 |
+
"expected": ['hi'],
|
37 |
+
})
|
38 |
+
|
39 |
+
def run_lens(model,PROMPT):
|
40 |
+
logits_lens_token_result_by_layer = []
|
41 |
+
logits_lens_probs_by_layer = []
|
42 |
+
logits_lens_ranks_by_layer = []
|
43 |
+
input_ids = model.tokenizer.encode(PROMPT)
|
44 |
+
with model.trace(input_ids, remote=True) as runner:
|
45 |
+
for layer_ix,layer in enumerate(model.model.layers):
|
46 |
+
hidden_state = layer.output[0][0]
|
47 |
+
logits_lens_normed_last_token = model.model.norm(hidden_state)
|
48 |
+
logits_lens_token_distribution = model.lm_head(logits_lens_normed_last_token)
|
49 |
+
logits_lens_last_token_logits = logits_lens_token_distribution[-1:]
|
50 |
+
logits_lens_probs = F.softmax(logits_lens_last_token_logits, dim=1).save()
|
51 |
+
logits_lens_probs_by_layer.append(logits_lens_probs)
|
52 |
+
logits_lens_next_token = torch.argmax(logits_lens_probs, dim=1).save()
|
53 |
+
logits_lens_token_result_by_layer.append(logits_lens_next_token)
|
54 |
+
tokens_out = llama.lm_head.output.argmax(dim=-1).save()
|
55 |
+
expected_token = tokens_out[0][-1].save()
|
56 |
+
logits_lens_all_probs = np.concatenate([probs[:, expected_token].cpu().detach().numpy() for probs in logits_lens_probs_by_layer])
|
57 |
+
#get the rank of the expected token from each layer's distribution
|
58 |
+
for layer_probs in logits_lens_probs_by_layer:
|
59 |
+
# Sort the probabilities in descending order and find the rank of the expected token
|
60 |
+
sorted_probs, sorted_indices = torch.sort(layer_probs, descending=True)
|
61 |
+
# Find the rank of the expected token (1-based rank)
|
62 |
+
expected_token_rank = (sorted_indices == expected_token).nonzero(as_tuple=True)[1].item() + 1
|
63 |
+
logits_lens_ranks_by_layer.append(expected_token_rank)
|
64 |
+
actual_output = llama.tokenizer.decode(expected_token.item())
|
65 |
+
logits_lens_results = [model.tokenizer.decode(next_token.item()) for next_token in logits_lens_token_result_by_layer]
|
66 |
+
return logits_lens_results, logits_lens_all_probs, actual_output,logits_lens_ranks_by_layer
|
67 |
+
|
68 |
+
|
69 |
+
def process_file(prompts_data,file_path):
|
70 |
+
"""Read uploaded file and return list of prompts."""
|
71 |
+
prompts = []
|
72 |
+
|
73 |
+
if file_path is None:
|
74 |
+
return prompts
|
75 |
+
|
76 |
+
if file_path.endswith('.csv'):
|
77 |
+
# Process CSV file
|
78 |
+
df = pd.read_csv(file_path)
|
79 |
+
if 'Prompt' in df.columns:
|
80 |
+
prompts = df[['Prompt']].dropna().values.tolist()
|
81 |
+
|
82 |
+
# Read the file as text and split into lines (one prompt per line)
|
83 |
+
else:
|
84 |
+
with open(file_path, 'r') as file:
|
85 |
+
prompts = [[line] for line in file.read().splitlines()]
|
86 |
+
|
87 |
+
for prompt in prompts_data:
|
88 |
+
if prompt==['']:
|
89 |
+
continue
|
90 |
+
else:
|
91 |
+
prompts.append(prompt)
|
92 |
+
|
93 |
+
return prompts
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
#problem with using gr.LinePlot instead of a plt.figure is that text labels cannot be added for each individual point
|
98 |
+
# def plot_prob(prompts_with_probs):
|
99 |
+
# return gr.LinePlot(prompts_with_probs, x="layer", y="probs",color="prompt", title="Probability of Expected Token",label="results",show_label=True,key="results")
|
100 |
+
import matplotlib.pyplot as plt
|
101 |
+
import pandas as pd
|
102 |
+
import io
|
103 |
+
from PIL import Image
|
104 |
+
def plot_prob(prompts_with_probs):
|
105 |
+
plt.figure(figsize=(10, 6))
|
106 |
+
|
107 |
+
# Iterate over each prompt and plot its probabilities
|
108 |
+
for prompt in prompts_with_probs['prompt'].unique():
|
109 |
+
# Filter the DataFrame for the current prompt
|
110 |
+
prompt_data = prompts_with_probs[prompts_with_probs['prompt'] == prompt]
|
111 |
+
|
112 |
+
# Plot probabilities for this prompt
|
113 |
+
plt.plot(prompt_data['layer'], prompt_data['probs'], marker='x', label=prompt)
|
114 |
+
|
115 |
+
# Annotate each point with the corresponding result
|
116 |
+
for layer, prob, result in zip(prompt_data['layer'], prompt_data['probs'], prompt_data['results']):
|
117 |
+
plt.text(layer, prob, result, ha='right', va='bottom', fontsize=8)
|
118 |
+
|
119 |
+
|
120 |
+
# Add labels and title
|
121 |
+
plt.xlabel('Layer Number')
|
122 |
+
plt.ylabel('Probability of Expected Token')
|
123 |
+
plt.title('Logits Lens for All Prompts')
|
124 |
+
plt.grid(True)
|
125 |
+
plt.ylim(0.0, 1.0)
|
126 |
+
plt.legend(title='Prompts', bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=1)
|
127 |
+
|
128 |
+
# Save the plot to a buffer
|
129 |
+
buf = io.BytesIO()
|
130 |
+
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
|
131 |
+
buf.seek(0)
|
132 |
+
img = Image.open(buf)
|
133 |
+
plt.close() # Close the figure to free memory
|
134 |
+
return img
|
135 |
+
# Example usage
|
136 |
+
# prompts_with_probs should be a DataFrame with 'prompt', 'layer', and 'probs' columns
|
137 |
+
|
138 |
+
import matplotlib.pyplot as plt
|
139 |
+
import pandas as pd
|
140 |
+
import io
|
141 |
+
from PIL import Image
|
142 |
+
|
143 |
+
def plot_rank(prompts_with_ranks):
|
144 |
+
plt.figure(figsize=(10, 6))
|
145 |
+
|
146 |
+
# Iterate over each prompt and plot its ranks
|
147 |
+
for prompt in prompts_with_ranks['prompt'].unique():
|
148 |
+
# Filter the DataFrame for the current prompt
|
149 |
+
prompt_data = prompts_with_ranks[prompts_with_ranks['prompt'] == prompt]
|
150 |
+
|
151 |
+
# Plot ranks for this prompt
|
152 |
+
plt.plot(prompt_data['layer'], prompt_data['ranks'], marker='x', label=prompt)
|
153 |
+
|
154 |
+
# Annotate each point with the corresponding result
|
155 |
+
for layer, rank, result in zip(prompt_data['layer'], prompt_data['ranks'], prompt_data['results']):
|
156 |
+
plt.text(layer, rank,result, ha='right', va='bottom', fontsize=8)
|
157 |
+
|
158 |
+
# Add labels and title
|
159 |
+
plt.xlabel('Layer Number')
|
160 |
+
plt.ylabel('Rank of Expected Token')
|
161 |
+
plt.title('Logits Lens Rank for All Prompts')
|
162 |
+
plt.grid(True)
|
163 |
+
plt.ylim(bottom=0) # Adjust if needed, depending on your rank values
|
164 |
+
plt.legend(title='Prompts', bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=1)
|
165 |
+
|
166 |
+
|
167 |
+
# Save the plot to a buffer
|
168 |
+
buf = io.BytesIO()
|
169 |
+
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
|
170 |
+
buf.seek(0)
|
171 |
+
img = Image.open(buf)
|
172 |
+
plt.close() # Close the figure to free memory
|
173 |
+
return img
|
174 |
+
|
175 |
+
import matplotlib.pyplot as plt
|
176 |
+
import pandas as pd
|
177 |
+
import io
|
178 |
+
from PIL import Image
|
179 |
+
|
180 |
+
def plot_prob_mean(prompts_with_probs):
|
181 |
+
# Calculate mean probabilities and variance
|
182 |
+
summary_stats = prompts_with_probs.groupby("prompt")["probs"].agg(
|
183 |
+
mean_prob="mean",
|
184 |
+
variance="var"
|
185 |
+
).reset_index()
|
186 |
+
|
187 |
+
# Set up the bar plot
|
188 |
+
plt.figure(figsize=(10, 6))
|
189 |
+
bars = plt.bar(summary_stats['prompt'], summary_stats['mean_prob'],
|
190 |
+
yerr=summary_stats['variance']**0.5, # Error bars are the standard deviation
|
191 |
+
capsize=5, color='skyblue')
|
192 |
+
|
193 |
+
# Add labels and title
|
194 |
+
plt.xlabel('Prompt')
|
195 |
+
plt.ylabel('Mean Probability')
|
196 |
+
plt.title('Mean Probability of Expected Token with Error Bars')
|
197 |
+
plt.xticks(rotation=45, ha='right')
|
198 |
+
plt.grid(axis='y')
|
199 |
+
|
200 |
+
# Annotate the mean and variance on the bars
|
201 |
+
for bar, mean, var in zip(bars, summary_stats['mean_prob'], summary_stats['variance']):
|
202 |
+
yval = bar.get_height()
|
203 |
+
plt.text(bar.get_x() + bar.get_width() / 2, yval, f'Mean: {mean:.2f}\nVar: {var:.2f}',
|
204 |
+
ha='center', va='bottom', fontsize=8, color='black')
|
205 |
+
|
206 |
+
# Save the plot to a buffer
|
207 |
+
buf = io.BytesIO()
|
208 |
+
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
|
209 |
+
buf.seek(0)
|
210 |
+
img = Image.open(buf)
|
211 |
+
plt.close() # Close the figure to free memory
|
212 |
+
return img
|
213 |
+
|
214 |
+
# Example usage
|
215 |
+
# prompts_with_probs should be a DataFrame with 'prompt' and 'probs' columns
|
216 |
+
|
217 |
+
def plot_rank_mean(prompts_with_ranks):
|
218 |
+
# Calculate mean ranks and variance
|
219 |
+
summary_stats = prompts_with_ranks.groupby("prompt")["ranks"].agg(
|
220 |
+
mean_rank="mean",
|
221 |
+
variance="var"
|
222 |
+
).reset_index()
|
223 |
+
|
224 |
+
# Set up the bar plot
|
225 |
+
plt.figure(figsize=(10, 6))
|
226 |
+
bars = plt.bar(summary_stats['prompt'], summary_stats['mean_rank'],
|
227 |
+
yerr=summary_stats['variance']**0.5, # Error bars are the standard deviation
|
228 |
+
capsize=5, color='salmon')
|
229 |
+
|
230 |
+
# Add labels and title
|
231 |
+
plt.xlabel('Prompt')
|
232 |
+
plt.ylabel('Mean Rank')
|
233 |
+
plt.title('Mean Rank of Expected Token with Error Bars')
|
234 |
+
plt.xticks(rotation=45, ha='right')
|
235 |
+
plt.grid(axis='y')
|
236 |
+
|
237 |
+
# Annotate the mean and variance on the bars
|
238 |
+
for bar, mean, var in zip(bars, summary_stats['mean_rank'], summary_stats['variance']):
|
239 |
+
yval = bar.get_height()
|
240 |
+
plt.text(bar.get_x() + bar.get_width() / 2, yval, f'Mean: {mean:.2f}\nVar: {var:.2f}',
|
241 |
+
ha='center', va='bottom', fontsize=8, color='black')
|
242 |
+
|
243 |
+
# Save the plot to a buffer
|
244 |
+
buf = io.BytesIO()
|
245 |
+
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
|
246 |
+
buf.seek(0)
|
247 |
+
img = Image.open(buf)
|
248 |
+
plt.close() # Close the figure to free memory
|
249 |
+
return img
|
250 |
+
|
251 |
+
def submit_prompts(prompts_data):
|
252 |
+
# Initialize lists to accumulate results
|
253 |
+
all_prompts = []
|
254 |
+
all_results = []
|
255 |
+
all_probs = []
|
256 |
+
all_expected = []
|
257 |
+
all_layers = []
|
258 |
+
all_ranks = []
|
259 |
+
|
260 |
+
# Iterate over each prompt
|
261 |
+
for prompt in prompts_data:
|
262 |
+
# If a prompt is an empty string, skip it
|
263 |
+
prompt = prompt[0]
|
264 |
+
if not prompt:
|
265 |
+
continue
|
266 |
+
|
267 |
+
# Run the lens model on the prompt
|
268 |
+
lens_output = run_lens(llama, prompt)
|
269 |
+
|
270 |
+
# Accumulate results for each layer
|
271 |
+
for layer_idx in range(len(lens_output[1])):
|
272 |
+
all_prompts.append(prompt)
|
273 |
+
all_results.append(lens_output[0][layer_idx])
|
274 |
+
all_probs.append(float(lens_output[1][layer_idx]))
|
275 |
+
all_expected.append(lens_output[2])
|
276 |
+
all_layers.append(int(layer_idx))
|
277 |
+
all_ranks.append(int(lens_output[3][layer_idx]))
|
278 |
+
|
279 |
+
# Create DataFrame from accumulated results
|
280 |
+
prompts_with_probs = pd.DataFrame(
|
281 |
+
{
|
282 |
+
"prompt": all_prompts,
|
283 |
+
"layer": all_layers,
|
284 |
+
"results": all_results,
|
285 |
+
"probs": all_probs,
|
286 |
+
"expected": all_expected,
|
287 |
+
})
|
288 |
+
|
289 |
+
prompts_with_ranks = pd.DataFrame(
|
290 |
+
{
|
291 |
+
"prompt": all_prompts,
|
292 |
+
"layer": all_layers,
|
293 |
+
"results": all_results,
|
294 |
+
"ranks": all_ranks,
|
295 |
+
"expected": all_expected,
|
296 |
+
})
|
297 |
+
return plot_prob(prompts_with_probs), plot_rank(prompts_with_ranks),plot_prob_mean(prompts_with_probs),plot_rank_mean(prompts_with_ranks)
|
298 |
+
|
299 |
+
|
300 |
+
def clear_all(prompts):
|
301 |
+
prompts=[['']]
|
302 |
+
prompts_data = gr.Dataframe(headers=["Prompt"], row_count=5, col_count=1, value= prompts, type="array", interactive=True)
|
303 |
+
return prompts_data,plot_prob(prompts_with_probs),plot_rank(prompts_with_ranks),plot_prob_mean(prompts_with_probs),plot_rank_mean(prompts_with_ranks)
|
304 |
+
|
305 |
+
|
306 |
+
def gradio_interface():
|
307 |
+
with gr.Blocks(theme="gradio/monochrome") as demo:
|
308 |
+
prompts=[['']]
|
309 |
+
prompts_data = gr.Dataframe(headers=["Prompt"], row_count=5, col_count=1, value= prompts, type="array", interactive=True)
|
310 |
+
prompt_file=gr.File(type="filepath", label="Upload a File with Prompts")
|
311 |
+
prompt_file.upload(process_file, inputs=[prompts_data,prompt_file], outputs=[prompts_data])
|
312 |
+
|
313 |
+
# Define the outputs
|
314 |
+
with gr.Row():
|
315 |
+
prob_visualization = gr.Image(value=plot_prob(prompts_with_probs), type="pil", label="Probability of Expected Token")
|
316 |
+
rank_visualization = gr.Image(value=plot_rank(prompts_with_ranks), type="pil", label="Rank of Expected Token")
|
317 |
+
with gr.Row():
|
318 |
+
prob_mean_visualization = gr.Image(value=plot_prob_mean(prompts_with_probs), type="pil", label="Mean Probability of Expected Token")
|
319 |
+
rank_mean_visualization = gr.Image(value=plot_rank_mean(prompts_with_ranks), type="pil", label="Mean Rank of Expected Token")
|
320 |
+
|
321 |
+
with gr.Row():
|
322 |
+
clear_btn = gr.Button("Clear")
|
323 |
+
clear_btn.click(clear_all, inputs=[prompts_data], outputs=[prompts_data,prob_visualization,rank_visualization,prob_mean_visualization,rank_mean_visualization])
|
324 |
+
submit_btn = gr.Button("Submit")
|
325 |
+
submit_btn.click(submit_prompts, inputs=[prompts_data], outputs=[prob_visualization,rank_visualization,prob_mean_visualization,rank_mean_visualization])#
|
326 |
+
|
327 |
+
|
328 |
+
demo.launch()
|
329 |
+
|
330 |
+
|
331 |
+
gradio_interface()
|