AryaWu commited on
Commit
02dd8dc
·
verified ·
1 Parent(s): db6d8d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -30
app.py CHANGED
@@ -23,19 +23,19 @@ llama = LanguageModel("meta-llama/Meta-Llama-3.1-8B", token=access_token)
23
  #placeholder for reset
24
  prompts_with_probs = pd.DataFrame(
25
  {
26
- "prompt": ['waiting for data'],
27
  "layer": [0],
28
- "results": ['hi'],
29
  "probs": [0],
30
- "expected": ['hi'],
31
  })
32
  prompts_with_ranks = pd.DataFrame(
33
  {
34
- "prompt": ['waiting for data'],
35
  "layer": [0],
36
- "results": ['hi'],
37
  "ranks": [0],
38
- "expected": ['hi'],
39
  })
40
 
41
  def run_lens(model,PROMPT):
@@ -94,15 +94,6 @@ def process_file(prompts_data,file_path):
94
 
95
  return prompts
96
 
97
-
98
-
99
- #problem with using gr.LinePlot instead of a plt.figure is that text labels cannot be added for each individual point
100
- # def plot_prob(prompts_with_probs):
101
- # return gr.LinePlot(prompts_with_probs, x="layer", y="probs",color="prompt", title="Probability of Expected Token",label="results",show_label=True,key="results")
102
- import matplotlib.pyplot as plt
103
- import pandas as pd
104
- import io
105
- from PIL import Image
106
  def plot_prob(prompts_with_probs):
107
  plt.figure(figsize=(10, 6))
108
 
@@ -134,13 +125,6 @@ def plot_prob(prompts_with_probs):
134
  img = Image.open(buf)
135
  plt.close() # Close the figure to free memory
136
  return img
137
- # Example usage
138
- # prompts_with_probs should be a DataFrame with 'prompt', 'layer', and 'probs' columns
139
-
140
- import matplotlib.pyplot as plt
141
- import pandas as pd
142
- import io
143
- from PIL import Image
144
 
145
  def plot_rank(prompts_with_ranks):
146
  plt.figure(figsize=(10, 6))
@@ -174,11 +158,6 @@ def plot_rank(prompts_with_ranks):
174
  plt.close() # Close the figure to free memory
175
  return img
176
 
177
- import matplotlib.pyplot as plt
178
- import pandas as pd
179
- import io
180
- from PIL import Image
181
-
182
  def plot_prob_mean(prompts_with_probs):
183
  # Calculate mean probabilities and variance
184
  summary_stats = prompts_with_probs.groupby("prompt")["probs"].agg(
@@ -213,9 +192,6 @@ def plot_prob_mean(prompts_with_probs):
213
  plt.close() # Close the figure to free memory
214
  return img
215
 
216
- # Example usage
217
- # prompts_with_probs should be a DataFrame with 'prompt' and 'probs' columns
218
-
219
  def plot_rank_mean(prompts_with_ranks):
220
  # Calculate mean ranks and variance
221
  summary_stats = prompts_with_ranks.groupby("prompt")["ranks"].agg(
 
23
  #placeholder for reset
24
  prompts_with_probs = pd.DataFrame(
25
  {
26
+ "prompt": [''],
27
  "layer": [0],
28
+ "results": [''],
29
  "probs": [0],
30
+ "expected": [''],
31
  })
32
  prompts_with_ranks = pd.DataFrame(
33
  {
34
+ "prompt": [''],
35
  "layer": [0],
36
+ "results": [''],
37
  "ranks": [0],
38
+ "expected": [''],
39
  })
40
 
41
  def run_lens(model,PROMPT):
 
94
 
95
  return prompts
96
 
 
 
 
 
 
 
 
 
 
97
  def plot_prob(prompts_with_probs):
98
  plt.figure(figsize=(10, 6))
99
 
 
125
  img = Image.open(buf)
126
  plt.close() # Close the figure to free memory
127
  return img
 
 
 
 
 
 
 
128
 
129
  def plot_rank(prompts_with_ranks):
130
  plt.figure(figsize=(10, 6))
 
158
  plt.close() # Close the figure to free memory
159
  return img
160
 
 
 
 
 
 
161
  def plot_prob_mean(prompts_with_probs):
162
  # Calculate mean probabilities and variance
163
  summary_stats = prompts_with_probs.groupby("prompt")["probs"].agg(
 
192
  plt.close() # Close the figure to free memory
193
  return img
194
 
 
 
 
195
  def plot_rank_mean(prompts_with_ranks):
196
  # Calculate mean ranks and variance
197
  summary_stats = prompts_with_ranks.groupby("prompt")["ranks"].agg(