import streamlit as st import pandas as pd import plotly.express as px from pandasai import Agent from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_openai import ChatOpenAI from langchain.chains import RetrievalQA from langchain.schema import Document import os # Set the title of the app st.title("Data Analyzer") # Fetch API keys from environment variables api_key = os.getenv("OPENAI_API_KEY") pandasai_api_key = os.getenv("PANDASAI_API_KEY") if not api_key or not pandasai_api_key: st.error( "API keys not found in the environment. Please set the 'OPENAI_API_KEY' and 'PANDASAI_API_KEY' environment variables." ) else: # File uploader uploaded_file = st.file_uploader("Upload an Excel or CSV file", type=["xlsx", "csv"]) if uploaded_file is not None: # Load the data if uploaded_file.name.endswith('.xlsx'): df = pd.read_excel(uploaded_file) else: df = pd.read_csv(uploaded_file) st.write("Data Preview:") st.write(df.head()) # Set up PandasAI Agent agent = Agent(df) # Convert the DataFrame into documents documents = [ Document( page_content=", ".join([f"{col}: {row[col]}" for col in df.columns]), metadata={"index": index} ) for index, row in df.iterrows() ] # Set up RAG embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(documents, embeddings) retriever = vectorstore.as_retriever() qa_chain = RetrievalQA.from_chain_type( llm=ChatOpenAI(), chain_type="stuff", retriever=retriever ) # Create tabs tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"]) with tab1: st.header("Data Analysis using PandasAI") pandas_question = st.text_input("Ask a question about the data (PandasAI):") if pandas_question: result = agent.chat(pandas_question) st.write("PandasAI Answer:", result) with tab2: st.header("Question Answering using RAG") rag_question = st.text_input("Ask a question about the data (RAG):") if rag_question: result = qa_chain.run(rag_question) st.write("RAG Answer:", result) with tab3: st.header("Data Visualization") viz_question = st.text_input("What kind of graph would you like to create? (e.g., 'Show a scatter plot of salary vs experience')") if viz_question: try: result = agent.chat(viz_question) # Since PandasAI output is text, extract executable code import re code_pattern = r'```python\n(.*?)\n```' code_match = re.search(code_pattern, result, re.DOTALL) if code_match: viz_code = code_match.group(1) # Modify code to use Plotly (px) instead of matplotlib (plt) viz_code = viz_code.replace('plt.', 'px.') viz_code = viz_code.replace('plt.show()', 'fig = px.scatter(df, x=x, y=y)') # Execute the code and display the chart exec(viz_code) st.plotly_chart(fig) else: st.write("Unable to generate a graph. Please try a different query.") except Exception as e: st.write(f"An error occurred: {str(e)}") st.write("Please try phrasing your query differently.") else: st.info("Please upload a file to begin analysis.")