import gradio as gr import sys from pathlib import Path import requests from fastai.vision import * from deoldify.visualize import * # Baixar pesos do modelo model_path = Path("./models/ColorizeArtistic_gen.pth") if not model_path.exists(): model_path.parent.mkdir(parents=True, exist_ok=True) url = "https://data.deepai.org/deoldify/ColorizeArtistic_gen.pth" response = requests.get(url, stream=True) with open(model_path, "wb") as f: for chunk in response.iter_content(chunk_size=1024): f.write(chunk) # Configurar o modelo DeOldify device = torch.device("cuda" if torch.cuda.is_available() else "cpu") colorizer = get_stable_image_colorizer(root_folder=".", artistic=True) def colorize_image(input_image): output = colorizer.plot_transformed_image( path=input_image, render_factor=35, display_render_factor=True, figsize=(20, 20) ) return output # Interface do Gradio interface = gr.Interface( fn=colorize_image, inputs=gr.Image(type="filepath", label="Imagem em Preto e Branco"), outputs=gr.Image(type="auto", label="Imagem Colorida"), title="Colorização de Imagens com IA", description="Carregue uma imagem em preto e branco, e o modelo colorizará automaticamente!", ) interface.launch()