Spaces:
Runtime error
Runtime error
File size: 1,277 Bytes
9eee4be da3625c 9eee4be da3625c 9eee4be da3625c 9eee4be da3625c 9eee4be da3625c 9eee4be da3625c 9eee4be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
import sys
from pathlib import Path
import requests
from fastai.vision import *
from deoldify.visualize import *
# Baixar pesos do modelo
model_path = Path("./models/ColorizeArtistic_gen.pth")
if not model_path.exists():
model_path.parent.mkdir(parents=True, exist_ok=True)
url = "https://data.deepai.org/deoldify/ColorizeArtistic_gen.pth"
response = requests.get(url, stream=True)
with open(model_path, "wb") as f:
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
# Configurar o modelo DeOldify
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
colorizer = get_stable_image_colorizer(root_folder=".", artistic=True)
def colorize_image(input_image):
output = colorizer.plot_transformed_image(
path=input_image, render_factor=35, display_render_factor=True, figsize=(20, 20)
)
return output
# Interface do Gradio
interface = gr.Interface(
fn=colorize_image,
inputs=gr.Image(type="filepath", label="Imagem em Preto e Branco"),
outputs=gr.Image(type="auto", label="Imagem Colorida"),
title="Colorização de Imagens com IA",
description="Carregue uma imagem em preto e branco, e o modelo colorizará automaticamente!",
)
interface.launch()
|