import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # L-MChat This Space demonstrates [L-MChat](https://huggingface.co/collections/Artples/l-mchat-663265a8351231c428318a8f) by L-AI. """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU! This demo does not work on CPU.

" model_options = { "Fast-Model": "Artples/L-MChat-Small", "Quality-Model": "Artples/L-MChat-7b" } @spaces.GPU(enable_queue=True, duration=90) def generate( message: str, model_choice: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.1, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: model_id = model_options[model_choice] model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer(conversation, return_tensors="pt", padding=True, truncation=True) if input_ids['input_ids'].shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids['input_ids'] = input_ids['input_ids'][:, -MAX_INPUT_TOKEN_LENGTH:] outputs = model.generate( **input_ids, max_length=input_ids['input_ids'].shape[1] + max_new_tokens, top_p=top_p, top_k=top_k, temperature=temperature, num_return_sequences=1, repetition_penalty=repetition_penalty ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) yield generated_text chat_interface = gr.Interface( fn=generate, inputs=[ gr.Textbox(lines=2, placeholder="Type your message here..."), gr.Dropdown(label="Choose Model", choices=list(model_options.keys())), gr.State(label="Chat History", default=[]), gr.Textbox(label="System Prompt", lines=6, placeholder="Enter system prompt if any..."), gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.1), gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), ], outputs=[gr.Textbox(label="Response")], theme="default", description=DESCRIPTION ) if __name__ == "__main__": chat_interface.launch()