File size: 12,047 Bytes
1c4b493
69c9fec
08c2eb9
c45dd10
6a94414
fec6a83
1c4b493
9c04880
6a94414
 
69c9fec
c45dd10
 
 
 
 
 
 
 
62fe7bb
c45dd10
 
 
 
 
 
9c04880
62fe7bb
6a94414
c69f6ae
9c04880
 
 
6a94414
 
 
 
 
 
 
 
 
 
c45dd10
 
6a94414
c45dd10
 
 
6a94414
 
c45dd10
 
6a94414
 
 
 
 
 
 
c45dd10
 
6a94414
c45dd10
6a94414
 
c45dd10
 
6a94414
c45dd10
1c4b493
c45dd10
 
 
 
 
 
6a94414
c45dd10
6a94414
c45dd10
 
6a94414
 
 
 
 
 
 
 
 
1c4b493
6a94414
 
 
1c4b493
6a94414
 
1c4b493
6a94414
 
9c04880
1c4b493
6a94414
 
 
08c2eb9
6a94414
08c2eb9
 
6a94414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08c2eb9
6a94414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69c9fec
 
 
 
 
 
 
 
 
 
6a94414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69c9fec
 
 
 
 
 
 
 
 
 
 
 
6a94414
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import io
import time
from pathlib import Path
from typing import List, Dict
from PIL import Image
import streamlit as st
import pandas as pd
import json
import yaml
import zipfile
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.datamodel.base_models import InputFormat
from docling.datamodel.document import ConversionStatus
from docling.datamodel.pipeline_options import (
    PdfPipelineOptions,
    AcceleratorOptions,
    AcceleratorDevice,
    TableStructureOptions,
    TableFormerMode,
    EasyOcrOptions,
    TesseractCliOcrOptions,
    TesseractOcrOptions,
    RapidOcrOptions,
    OcrMacOptions,
)
from docling_core.types.doc import PictureItem, TableItem

# Configuration des répertoires
OUTPUT_DIR = Path("output")
FIGURES_DIR = OUTPUT_DIR / "figures"
TABLES_DIR = OUTPUT_DIR / "tables"

def setup_directories():
    OUTPUT_DIR.mkdir(exist_ok=True)
    FIGURES_DIR.mkdir(exist_ok=True)
    TABLES_DIR.mkdir(exist_ok=True)

def is_valid_file(file_path: Path) -> bool:
    valid_extensions = [".pdf", ".docx", ".pptx", ".html", ".png", ".jpg"]
    return file_path.suffix.lower() in valid_extensions

def create_document_converter(config: Dict) -> DocumentConverter:
    accelerator_options = AcceleratorOptions(
        num_threads=8,
        device=AcceleratorDevice[config['accelerator'].upper()]
    )

    table_structure_options = TableStructureOptions(
        mode=TableFormerMode[config['table_mode'].upper()],
        do_cell_matching=True
    )

    ocr_engines = {
        "easyocr": EasyOcrOptions(lang=config['ocr_languages']),
        "tesseract_cli": TesseractCliOcrOptions(lang=config['ocr_languages']),
        "tesserocr": TesseractOcrOptions(lang=config['ocr_languages']),
        "rapidocr": RapidOcrOptions(lang=config['ocr_languages']),
        "ocrmac": OcrMacOptions(lang=config['ocr_languages'])
    }

    pipeline_options = PdfPipelineOptions(
        do_ocr=config['use_ocr'],
        generate_page_images=True,
        generate_picture_images=config['export_figures'],
        generate_table_images=config['export_tables'],
        accelerator_options=accelerator_options,
        table_structure_options=table_structure_options,
        ocr_options=ocr_engines[config['ocr_engine']]
    )

    return DocumentConverter(
        allowed_formats=[
            InputFormat.PDF,
            InputFormat.DOCX,
            InputFormat.PPTX,
            InputFormat.HTML,
            InputFormat.IMAGE
        ],
        format_options={InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)}
    )

def process_files(uploaded_files, config: Dict) -> Dict:
    setup_directories()
    converter = create_document_converter(config)
    results = {
        'figures': [],
        'tables_csv': [],
        'tables_html': [],
        'exports': {fmt: [] for fmt in config['export_formats']}
    }

    progress_bar = st.progress(0)
    status_placeholder = st.empty()
    start_time = time.time()

    for idx, uploaded_file in enumerate(uploaded_files):
        try:
            file_path = OUTPUT_DIR / uploaded_file.name
            file_path.write_bytes(uploaded_file.getbuffer())
            
            if not is_valid_file(file_path):
                continue

            status_placeholder.info(f"Traitement de {file_path.name} ({idx+1}/{len(uploaded_files)})")
            
            conv_results = list(converter.convert_all([file_path], raises_on_error=False))
            
            for conv_res in conv_results:
                if conv_res.status == ConversionStatus.SUCCESS:
                    handle_successful_conversion(conv_res, results, config['export_formats'])
                
            progress_bar.progress((idx + 1) / len(uploaded_files))

        except Exception as e:
            st.error(f"Erreur avec {uploaded_file.name}: {str(e)}")

    results['processing_time'] = time.time() - start_time
    return results

def handle_successful_conversion(conv_res, results: Dict, export_formats: List[str]):
    # Export des formats de document
    for fmt in export_formats:
        output_file = OUTPUT_DIR / f"{conv_res.input.file.stem}.{fmt}"
        with open(output_file, "w") as f:
            if fmt == "md":
                content = conv_res.document.export_to_markdown()
                f.write(content)
                results['exports']['md'].append((output_file, content))
            elif fmt == "json":
                content = json.dumps(conv_res.document.export_to_dict(), ensure_ascii=False, indent=2)
                f.write(content)
                results['exports']['json'].append((output_file, content))
            elif fmt == "yaml":
                content = yaml.dump(conv_res.document.export_to_dict(), allow_unicode=True)
                f.write(content)
                results['exports']['yaml'].append((output_file, content))
            elif fmt == "multimodal":
                results['exports']['multimodal'].append(output_file)

    # Extraction des éléments
    for element, _ in conv_res.document.iterate_items():
        if isinstance(element, PictureItem):
            handle_picture_element(element, conv_res, results)
        elif isinstance(element, TableItem):
            handle_table_element(element, conv_res, results)

def handle_picture_element(element: PictureItem, conv_res, results: Dict):
    fig_path = FIGURES_DIR / f"{conv_res.input.file.stem}_figure_{len(results['figures'])}.png"
    element.image.pil_image.save(fig_path)
    results['figures'].append(fig_path)

def handle_table_element(element: TableItem, conv_res, results: Dict):
    csv_path = TABLES_DIR / f"{conv_res.input.file.stem}_table_{len(results['tables_csv'])}.csv"
    element.export_to_dataframe().to_csv(csv_path, index=False)
    results['tables_csv'].append(csv_path)
    
    html_path = TABLES_DIR / f"{conv_res.input.file.stem}_table_{len(results['tables_html'])}.html"
    with open(html_path, "w") as f:
        f.write(element.export_to_html())
    results['tables_html'].append(html_path)

def display_export_content(title: str, content: str, format: str):
    with st.expander(f"📄 {title}"):
        if format == "md":
            st.markdown(content)
        elif format in ["json", "yaml"]:
            st.code(content, language=format)
        elif format == "multimodal":
            st.info("Affichage multimodal combinant texte, images et tableaux")
            st.markdown(content)

def display_results(results: Dict):
    st.session_state.time_placeholder.success(f"⏱ Temps total de conversion : {int(results['processing_time'])} secondes")
    
    # Affichage des exports
    for fmt, exports in results['exports'].items():
        if exports:
            st.subheader(f"📁 Exports {fmt.upper()}")
            for export in exports:
                if fmt == "multimodal":
                    display_multimodal_result(export)
                else:
                    file_path, content = export
                    display_export_content(file_path.name, content, fmt)

    # Section des figures
    if results['figures']:
        st.subheader("🖼️ Figures extraites")
        cols = st.columns(3)
        for idx, fig_path in enumerate(results['figures']):
            try:
                cols[idx % 3].image(Image.open(fig_path), caption=fig_path.name, use_container_width=True)
            except Exception as e:
                cols[idx % 3].error(f"Erreur d'affichage de {fig_path.name}")

    # Section des tableaux
    if results['tables_csv'] or results['tables_html']:
        st.subheader("📋 Tableaux extraits")
        display_format = st.radio("Format d'affichage", ['CSV', 'HTML'], horizontal=True)
        
        if display_format == 'CSV':
            for table_path in results['tables_csv']:
                try:
                    df = pd.read_csv(table_path)
                    st.write(f"**{table_path.stem}**")
                    st.dataframe(df.style.set_properties(**{'text-align': 'left'}))
                except Exception as e:
                    st.error(f"Erreur de lecture CSV {table_path.name}: {str(e)}")
        else:
            for html_path in results['tables_html']:
                try:
                    with open(html_path, "r") as f:
                        st.write(f"**{html_path.stem}**")
                        st.markdown(f.read(), unsafe_allow_html=True)
                except Exception as e:
                    st.error(f"Erreur de lecture HTML {html_path.name}: {str(e)}")

def display_multimodal_result(file_path: Path):
    with st.expander(f"🌈 {file_path.name}"):
        col1, col2 = st.columns([2, 1])
        
        with col1:
            try:
                with open(file_path, "r") as f:
                    content = f.read()
                st.markdown(content)
            except Exception as e:
                st.error(f"Erreur de lecture : {str(e)}")
        
        with col2:
            related_files = [
                f for f in OUTPUT_DIR.glob(f"{file_path.stem}*") 
                if f != file_path and not f.is_dir()
            ]
            
            if related_files:
                st.write("Fichiers associés :")
                for f in related_files:
                    st.write(f"- `{f.name}`")
                    if f.suffix in [".png", ".jpg"]:
                        st.image(Image.open(f), use_column_width=True)
                    elif f.suffix == ".csv":
                        try:
                            st.dataframe(pd.read_csv(f).head(3))
                        except Exception as e:
                            st.error(f"Erreur d'affichage CSV : {str(e)}")

def create_zip_buffer(directory: Path) -> bytes:
    buffer = io.BytesIO()
    with zipfile.ZipFile(buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
        for root, _, files in os.walk(directory):
            for file in files:
                file_path = Path(root) / file
                zipf.write(file_path, arcname=file_path.relative_to(directory.parent))
    buffer.seek(0)
    return buffer.getvalue()

# Interface utilisateur
def main():
    st.title("📊🦆 Docling Document Converter")
    st.session_state.time_placeholder = st.empty()
    
    uploaded_files = st.file_uploader(
        "Téléchargez vos documents",
        accept_multiple_files=True,
        type=["pdf", "docx", "pptx", "html", "png", "jpg"]
    )
    
    with st.expander("Options avancées"):
        config = {
            'use_ocr': st.checkbox("Activer OCR", True),
            'export_figures': st.checkbox("Exporter les images", True),
            'export_tables': st.checkbox("Exporter les tableaux", True),
            'ocr_engine': st.selectbox("Moteur OCR", ["easyocr", "tesseract_cli", "tesserocr", "rapidocr", "ocrmac"]),
            'ocr_languages': st.text_input("Langues OCR (séparées par des virgules)", "en").split(','),
            'table_mode': st.selectbox("Mode des tableaux", ["ACCURATE", "FAST"]),
            'export_formats': st.multiselect(
                "Formats d'export",
                ["json", "yaml", "md", "multimodal"],
                default=["md"]
            ),
            'accelerator': st.selectbox("Accélérateur matériel", ["cpu", "cuda", "mps"], index=0)
        }

    if st.button("Démarrer la conversion"):
        if uploaded_files:
            results = process_files(uploaded_files, config)
            display_results(results)
            st.success("✅ Conversion terminée avec succès !")
            
            # Création du buffer ZIP
            try:
                zip_buffer = create_zip_buffer(OUTPUT_DIR)
                st.download_button(
                    label="📥 Télécharger tous les résultats",
                    data=zip_buffer,
                    file_name="conversion_results.zip",
                    mime="application/zip"
                )
            except Exception as e:
                st.error(f"Erreur lors de la création du ZIP : {str(e)}")

if __name__ == "__main__":
    main()