Spaces:
Sleeping
Sleeping
Commit
·
bfc585e
1
Parent(s):
8568b2c
push files
Browse files- .gitignore +3 -0
- Dockerfile +14 -0
- __init__.py +0 -0
- main.py +42 -0
- model.py +183 -0
- requirements.txt +4 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
models/
|
3 |
+
__pycache__/
|
Dockerfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12
|
2 |
+
RUN useradd -m -u 1000 user
|
3 |
+
USER user
|
4 |
+
WORKDIR /code
|
5 |
+
RUN chown -R user:user /code
|
6 |
+
ENV HOME=/home/user
|
7 |
+
ENV PATH=/home/user/.local/bin:$PATH
|
8 |
+
WORKDIR $HOME/app
|
9 |
+
COPY ./requirements.txt ./
|
10 |
+
RUN pip install --no-cache-dir -r ./requirements.txt
|
11 |
+
COPY --chown=user . $HOME/app
|
12 |
+
# COPY --chown=user:user . /code
|
13 |
+
# COPY . .
|
14 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
__init__.py
ADDED
File without changes
|
main.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from model import load_model, classify
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import List
|
5 |
+
import numpy as np
|
6 |
+
import uvicorn
|
7 |
+
from typing import List
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
class InputData(BaseModel):
|
11 |
+
features: List[float]
|
12 |
+
|
13 |
+
# class InputData(BaseModel):
|
14 |
+
# features: List[float]
|
15 |
+
|
16 |
+
# @field_validator('features')
|
17 |
+
# def check_features_length(cls, v):
|
18 |
+
# if len(v) != 384:
|
19 |
+
# raise ValueError('Features must be a list of length 384')
|
20 |
+
# return v
|
21 |
+
|
22 |
+
global model
|
23 |
+
|
24 |
+
model = load_model()
|
25 |
+
|
26 |
+
@app.post("/classify")
|
27 |
+
async def classify_data(data: InputData):
|
28 |
+
try:
|
29 |
+
# Convert input to numpy array for model
|
30 |
+
features = np.array(data.features)
|
31 |
+
|
32 |
+
# Get prediction using the imported classify function
|
33 |
+
prediction, confidence = classify(model, features)
|
34 |
+
|
35 |
+
return {"prediction": prediction, "confidence": confidence}
|
36 |
+
except Exception as e:
|
37 |
+
raise HTTPException(status_code=500, detail=f"Error during classification: {str(e)}")
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
# Load the model at startup
|
41 |
+
load_model()
|
42 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
model.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
# import h5py
|
3 |
+
import numpy as np
|
4 |
+
# import pandas as pd
|
5 |
+
# from sklearn.model_selection import train_test_split
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
# from torch.utils.data import Dataset, DataLoader
|
10 |
+
from monai.networks.nets import SegResNet
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
# from tqdm.notebook import tqdm, trange
|
13 |
+
|
14 |
+
# class EmbeddingsDataset(Dataset):
|
15 |
+
# """Helper class to load and work with the stored embeddings"""
|
16 |
+
|
17 |
+
# def __init__(self, embeddings_path, metadata_path, transform=None):
|
18 |
+
# """
|
19 |
+
# Initialize the dataset
|
20 |
+
|
21 |
+
# Args:
|
22 |
+
# embeddings_path: Path to the directory containing H5 embedding files
|
23 |
+
# metadata_path: Path to the directory containing metadata files
|
24 |
+
# transform: Optional transforms to apply to the data
|
25 |
+
# """
|
26 |
+
# self.embeddings_path = embeddings_path
|
27 |
+
# self.metadata_path = metadata_path
|
28 |
+
# self.transform = transform
|
29 |
+
# self.master_metadata = pd.read_parquet(os.path.join(metadata_path, "master_metadata.parquet"))
|
30 |
+
# # Limit to data with labels
|
31 |
+
# self.metadata = self.master_metadata.dropna(subset=['label'])
|
32 |
+
|
33 |
+
# def __len__(self):
|
34 |
+
# return len(self.metadata)
|
35 |
+
|
36 |
+
# def __getitem__(self, idx):
|
37 |
+
# """Get embedding and label for a specific index"""
|
38 |
+
# row = self.metadata.iloc[idx]
|
39 |
+
# batch_name = row['embedding_batch']
|
40 |
+
# embedding_index = row['embedding_index']
|
41 |
+
# label = row['label']
|
42 |
+
|
43 |
+
# # Load the embedding
|
44 |
+
# h5_path = os.path.join(self.embeddings_path, f"{batch_name}.h5")
|
45 |
+
# with h5py.File(h5_path, 'r') as h5f:
|
46 |
+
# embedding = h5f['embeddings'][embedding_index]
|
47 |
+
|
48 |
+
# # Convert to PyTorch tensor
|
49 |
+
# embedding = torch.tensor(embedding, dtype=torch.float32)
|
50 |
+
|
51 |
+
# # Reshape for CNN input - we expect embeddings of shape (384,)
|
52 |
+
# # Reshape to (1, 384, 1, 1) for network input
|
53 |
+
# embedding = embedding.view(1, 384, 1)
|
54 |
+
|
55 |
+
# # Convert label to tensor (0=negative, 1=positive)
|
56 |
+
# label = torch.tensor(label, dtype=torch.long)
|
57 |
+
|
58 |
+
# if self.transform:
|
59 |
+
# embedding = self.transform(embedding)
|
60 |
+
|
61 |
+
# return embedding, label
|
62 |
+
|
63 |
+
# def get_embedding(self, file_id):
|
64 |
+
# """Get embedding for a specific file ID"""
|
65 |
+
# # Find the file in metadata
|
66 |
+
# file_info = self.master_metadata[self.master_metadata['file_id'] == file_id]
|
67 |
+
|
68 |
+
# if len(file_info) == 0:
|
69 |
+
# raise ValueError(f"File ID {file_id} not found in metadata")
|
70 |
+
|
71 |
+
# # Get the batch and index
|
72 |
+
# batch_name = file_info['embedding_batch'].iloc[0]
|
73 |
+
# embedding_index = file_info['embedding_index'].iloc[0]
|
74 |
+
|
75 |
+
# # Load the embedding
|
76 |
+
# h5_path = os.path.join(self.embeddings_path, f"{batch_name}.h5")
|
77 |
+
# with h5py.File(h5_path, 'r') as h5f:
|
78 |
+
# embedding = h5f['embeddings'][embedding_index]
|
79 |
+
|
80 |
+
# return embedding, file_info['label'].iloc[0] if 'label' in file_info.columns else None
|
81 |
+
|
82 |
+
class SelfSupervisedHead(nn.Module):
|
83 |
+
"""Self-supervised learning head for cancer classification
|
84 |
+
|
85 |
+
Since no coordinates or bounding boxes are available, this head focuses on
|
86 |
+
learning from the entire embedding through self-supervision.
|
87 |
+
"""
|
88 |
+
def __init__(self, in_channels, num_classes=2):
|
89 |
+
super(SelfSupervisedHead, self).__init__()
|
90 |
+
self.conv = nn.Conv2d(in_channels, 128, kernel_size=1)
|
91 |
+
self.bn = nn.BatchNorm2d(128)
|
92 |
+
self.relu = nn.ReLU(inplace=True)
|
93 |
+
self.global_pool = nn.AdaptiveAvgPool2d(1)
|
94 |
+
|
95 |
+
# Self-supervised projector (MLP)
|
96 |
+
self.projector = nn.Sequential(
|
97 |
+
nn.Linear(128, 256),
|
98 |
+
nn.BatchNorm1d(256),
|
99 |
+
nn.ReLU(inplace=True),
|
100 |
+
nn.Linear(256, 128)
|
101 |
+
)
|
102 |
+
|
103 |
+
# Classification layer
|
104 |
+
self.fc = nn.Linear(128, num_classes)
|
105 |
+
|
106 |
+
def forward(self, x):
|
107 |
+
x = self.conv(x)
|
108 |
+
x = self.bn(x)
|
109 |
+
x = self.relu(x)
|
110 |
+
x = self.global_pool(x)
|
111 |
+
x = x.view(x.size(0), -1)
|
112 |
+
|
113 |
+
# Apply projector for self-supervised learning
|
114 |
+
features = self.projector(x)
|
115 |
+
|
116 |
+
# Classification output
|
117 |
+
output = self.fc(features)
|
118 |
+
return output, features
|
119 |
+
|
120 |
+
class SelfSupervisedCancerModel(nn.Module):
|
121 |
+
"""SegResNet with self-supervised learning head for cancer classification"""
|
122 |
+
def __init__(self, num_classes=2):
|
123 |
+
super(SelfSupervisedCancerModel, self).__init__()
|
124 |
+
# Initialize SegResNet as backbone
|
125 |
+
# Modified to work with 1-channel input and small input size
|
126 |
+
self.backbone = SegResNet(
|
127 |
+
spatial_dims=2,
|
128 |
+
in_channels=1,
|
129 |
+
out_channels=2,
|
130 |
+
blocks_down=[3, 4, 23, 3],
|
131 |
+
blocks_up=[3, 6, 3],
|
132 |
+
upsample_mode="deconv",
|
133 |
+
init_filters=32,
|
134 |
+
)
|
135 |
+
|
136 |
+
# We know from the structure that the final conv layer outputs 2 channels
|
137 |
+
# Look at the print of self.backbone.conv_final showing Conv2d(8, 2, ...)
|
138 |
+
backbone_out_channels = 2
|
139 |
+
|
140 |
+
# Replace classifier with our self-supervised head
|
141 |
+
self.ssl_head = SelfSupervisedHead(backbone_out_channels, num_classes)
|
142 |
+
|
143 |
+
# Remove original classifier if needed
|
144 |
+
if hasattr(self.backbone, 'class_layers'):
|
145 |
+
self.backbone.class_layers = nn.Identity()
|
146 |
+
|
147 |
+
def forward(self, x, return_features=False):
|
148 |
+
# Run through backbone
|
149 |
+
features = self.backbone(x)
|
150 |
+
|
151 |
+
# Apply self-supervised head
|
152 |
+
output, proj_features = self.ssl_head(features)
|
153 |
+
|
154 |
+
if return_features:
|
155 |
+
return output, proj_features
|
156 |
+
return output
|
157 |
+
|
158 |
+
def load_model():
|
159 |
+
path = hf_hub_download(repo_id="Arpit-Bansal/Medical-Diagnosing-models", filename="cancer_detector_model.pth",
|
160 |
+
)
|
161 |
+
model = SelfSupervisedCancerModel(num_classes=2)
|
162 |
+
state_dict = torch.load(path, map_location=torch.device('cpu'))
|
163 |
+
|
164 |
+
model.load_state_dict(state_dict=state_dict)
|
165 |
+
|
166 |
+
return model.eval()
|
167 |
+
|
168 |
+
|
169 |
+
def classify(model, embedding):
|
170 |
+
"""Classify a single embedding using the trained model"""
|
171 |
+
# Ensure the model is in evaluation
|
172 |
+
embedding_tensor = torch.tensor(embedding, dtype=torch.float32).view(1, 1, 384, 1)
|
173 |
+
|
174 |
+
with torch.no_grad():
|
175 |
+
output = model(embedding_tensor)
|
176 |
+
probs = torch.softmax(output, dim=1)
|
177 |
+
predicted_class = torch.argmax(probs, dim=1).item()
|
178 |
+
confidence = probs[0, predicted_class].item()
|
179 |
+
prediction = "positive" if predicted_class == 1 else "negative"
|
180 |
+
|
181 |
+
return prediction, confidence
|
182 |
+
|
183 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.7.0
|
2 |
+
monai==1.4.0
|
3 |
+
fastapi[all]
|
4 |
+
huggingface-hub==0.30.2
|