File size: 32,262 Bytes
ced4316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 |
import re
from typing import Dict, List, Tuple
import bs4
def replace_refspans(
spans_to_replace: List[Tuple[int, int, str, str]],
full_string: str,
pre_padding: str = "",
post_padding: str = "",
btwn_padding: str = ", ",
) -> str:
"""
For each span within the full string, replace that span with new text
:param spans_to_replace: list of tuples of form (start_ind, end_ind, span_text, new_substring)
:param full_string:
:param pre_padding:
:param post_padding:
:param btwn_padding:
:return:
"""
# assert all spans are equal to full_text span
assert all([full_string[start:end] == span for start, end, span, _ in spans_to_replace])
# assert none of the spans start with the same start ind
start_inds = [rep[0] for rep in spans_to_replace]
assert len(set(start_inds)) == len(start_inds)
# sort by start index
spans_to_replace.sort(key=lambda x: x[0])
# form strings for each span group
for i, entry in enumerate(spans_to_replace):
start, end, span, new_string = entry
# skip empties
if end <= 0:
continue
# compute shift amount
shift_amount = len(new_string) - len(span) + len(pre_padding) + len(post_padding)
# shift remaining appropriately
for ind in range(i + 1, len(spans_to_replace)):
next_start, next_end, next_span, next_string = spans_to_replace[ind]
# skip empties
if next_end <= 0:
continue
# if overlap between ref span and current ref span, remove from replacement
if next_start < end:
next_start = 0
next_end = 0
next_string = ""
# if ref span abuts previous reference span
elif next_start == end:
next_start += shift_amount
next_end += shift_amount
next_string = btwn_padding + pre_padding + next_string + post_padding
# if ref span starts after, shift starts and ends
elif next_start > end:
next_start += shift_amount
next_end += shift_amount
next_string = pre_padding + next_string + post_padding
# save adjusted span
spans_to_replace[ind] = (next_start, next_end, next_span, next_string)
spans_to_replace = [entry for entry in spans_to_replace if entry[1] > 0]
spans_to_replace.sort(key=lambda x: x[0])
# apply shifts in series
for start, end, span, new_string in spans_to_replace:
assert full_string[start:end] == span
full_string = full_string[:start] + new_string + full_string[end:]
return full_string
BRACKET_REGEX = re.compile(r"\[[1-9]\d{0,2}([,;\-\s]+[1-9]\d{0,2})*;?\]")
BRACKET_STYLE_THRESHOLD = 5
SINGLE_BRACKET_REGEX = re.compile(r"\[([1-9]\d{0,2})\]")
EXPANSION_CHARS = {"-", "–"}
REPLACE_TABLE_TOKS = {
"<row>": "<tr>",
"<row/>": "<tr/>",
"</row>": "</tr>",
"<cell>": "<td>",
"<cell/>": "<td/>",
"</cell>": "</td>",
"<cell ": "<td ",
"cols=": "colspan=",
}
def span_already_added(sub_start: int, sub_end: int, span_indices: List[Tuple[int, int]]) -> bool:
"""
Check if span is a subspan of existing span
:param sub_start:
:param sub_end:
:param span_indices:
:return:
"""
for span_start, span_end in span_indices:
if sub_start >= span_start and sub_end <= span_end:
return True
return False
def is_expansion_string(between_string: str) -> bool:
"""
Check if the string between two refs is an expansion string
:param between_string:
:return:
"""
if (
len(between_string) <= 2
and any([c in EXPANSION_CHARS for c in between_string])
and all([c in EXPANSION_CHARS.union({" "}) for c in between_string])
):
return True
return False
# TODO: still cases like `09bcee03baceb509d4fcf736fa1322cb8adf507f` w/ dups like ['L Jung', 'R Hessler', 'Louis Jung', 'Roland Hessler']
# example paper that has empties & duplicates: `09bce26cc7e825e15a4469e3e78b7a54898bb97f`
def _clean_empty_and_duplicate_authors_from_grobid_parse(
authors: List[Dict],
) -> List[Dict]:
"""
Within affiliation, `location` is a dict with fields <settlement>, <region>, <country>, <postCode>, etc.
Too much hassle, so just take the first one that's not empty.
"""
# stripping empties
clean_authors_list = []
for author in authors:
clean_first = author["first"].strip()
clean_last = author["last"].strip()
clean_middle = [m.strip() for m in author["middle"]]
clean_suffix = author["suffix"].strip()
if clean_first or clean_last or clean_middle:
author["first"] = clean_first
author["last"] = clean_last
author["middle"] = clean_middle
author["suffix"] = clean_suffix
clean_authors_list.append(author)
# combining duplicates (preserve first occurrence of author name as position)
key_to_author_blobs = {}
ordered_keys_by_author_pos = []
for author in clean_authors_list:
key = (
author["first"],
author["last"],
" ".join(author["middle"]),
author["suffix"],
)
if key not in key_to_author_blobs:
key_to_author_blobs[key] = author
ordered_keys_by_author_pos.append(key)
else:
if author["email"]:
key_to_author_blobs[key]["email"] = author["email"]
if author["affiliation"] and (
author["affiliation"]["institution"]
or author["affiliation"]["laboratory"]
or author["affiliation"]["location"]
):
key_to_author_blobs[key]["affiliation"] = author["affiliation"]
dedup_authors_list = [key_to_author_blobs[key] for key in ordered_keys_by_author_pos]
return dedup_authors_list
def sub_spans_and_update_indices(
spans_to_replace: List[Tuple[int, int, str, str]], full_string: str
) -> Tuple[str, List]:
"""
Replace all spans and recompute indices
:param spans_to_replace:
:param full_string:
:return:
"""
# TODO: check no spans overlapping
# TODO: check all spans well-formed
# assert all spans are equal to full_text span
assert all([full_string[start:end] == token for start, end, token, _ in spans_to_replace])
# assert none of the spans start with the same start ind
start_inds = [rep[0] for rep in spans_to_replace]
assert len(set(start_inds)) == len(start_inds)
# sort by start index
spans_to_replace.sort(key=lambda x: x[0])
# compute offsets for each span
new_spans = [
(start, end, token, surface, 0) for start, end, token, surface in spans_to_replace
]
for i, entry in enumerate(spans_to_replace):
start, end, token, surface = entry
new_end = start + len(surface)
offset = new_end - end
# new_spans[i][1] += offset
new_spans[i] = (
new_spans[i][0],
new_spans[i][1] + offset,
new_spans[i][2],
new_spans[i][3],
new_spans[i][4],
)
# for new_span_entry in new_spans[i + 1 :]:
# new_span_entry[4] += offset
for j in range(i + 1, len(new_spans)):
new_spans[j] = (
new_spans[j][0],
new_spans[j][1],
new_spans[j][2],
new_spans[j][3],
new_spans[j][4] + offset,
)
# generate new text and create final spans
new_text = replace_refspans(spans_to_replace, full_string, btwn_padding="")
result = [
(start + offset, end + offset, token, surface)
for start, end, token, surface, offset in new_spans
]
return new_text, result
class UniqTokenGenerator:
"""
Generate unique token
"""
def __init__(self, tok_string):
self.tok_string = tok_string
self.ind = 0
def __iter__(self):
return self
def __next__(self):
return self.next()
def next(self):
new_token = f"{self.tok_string}{self.ind}"
self.ind += 1
return new_token
def normalize_grobid_id(grobid_id: str):
"""
Normalize grobid object identifiers
:param grobid_id:
:return:
"""
str_norm = grobid_id.upper().replace("_", "").replace("#", "")
if str_norm.startswith("B"):
return str_norm.replace("B", "BIBREF")
if str_norm.startswith("TAB"):
return str_norm.replace("TAB", "TABREF")
if str_norm.startswith("FIG"):
return str_norm.replace("FIG", "FIGREF")
if str_norm.startswith("FORMULA"):
return str_norm.replace("FORMULA", "EQREF")
return str_norm
def extract_formulas_from_tei_xml(sp: bs4.BeautifulSoup) -> None:
"""
Replace all formulas with the text
:param sp:
:return:
"""
for eq in sp.find_all("formula"):
eq.replace_with(sp.new_string(eq.text.strip()))
def table_to_html(table: bs4.element.Tag) -> str:
"""
Sub table tags with html table tags
:param table_str:
:return:
"""
for tag in table:
if tag.name != "row":
print(f"Unknown table subtag: {tag.name}")
tag.decompose()
table_str = str(table)
for token, subtoken in REPLACE_TABLE_TOKS.items():
table_str = table_str.replace(token, subtoken)
return table_str
def extract_figures_and_tables_from_tei_xml(sp: bs4.BeautifulSoup) -> Dict[str, Dict]:
"""
Generate figure and table dicts
:param sp:
:return:
"""
ref_map = dict()
for fig in sp.find_all("figure"):
try:
if fig.name and fig.get("xml:id"):
if fig.get("type") == "table":
ref_map[normalize_grobid_id(fig.get("xml:id"))] = {
"text": (
fig.figDesc.text.strip()
if fig.figDesc
else fig.head.text.strip() if fig.head else ""
),
"latex": None,
"type": "table",
"content": table_to_html(fig.table),
"fig_num": fig.get("xml:id"),
}
else:
if True in [char.isdigit() for char in fig.findNext("head").findNext("label")]:
fig_num = fig.findNext("head").findNext("label").contents[0]
else:
fig_num = None
ref_map[normalize_grobid_id(fig.get("xml:id"))] = {
"text": fig.figDesc.text.strip() if fig.figDesc else "",
"latex": None,
"type": "figure",
"content": "",
"fig_num": fig_num,
}
except AttributeError:
continue
fig.decompose()
return ref_map
def check_if_citations_are_bracket_style(sp: bs4.BeautifulSoup) -> bool:
"""
Check if the document has bracket style citations
:param sp:
:return:
"""
cite_strings = []
if sp.body:
for div in sp.body.find_all("div"):
if div.head:
continue
for rtag in div.find_all("ref"):
ref_type = rtag.get("type")
if ref_type == "bibr":
cite_strings.append(rtag.text.strip())
# check how many match bracket style
bracket_style = [bool(BRACKET_REGEX.match(cite_str)) for cite_str in cite_strings]
# return true if
if sum(bracket_style) > BRACKET_STYLE_THRESHOLD:
return True
return False
def sub_all_note_tags(sp: bs4.BeautifulSoup) -> bs4.BeautifulSoup:
"""
Sub all note tags with p tags
:param para_el:
:param sp:
:return:
"""
for ntag in sp.find_all("note"):
p_tag = sp.new_tag("p")
p_tag.string = ntag.text.strip()
ntag.replace_with(p_tag)
return sp
def process_formulas_in_paragraph(para_el: bs4.BeautifulSoup, sp: bs4.BeautifulSoup) -> None:
"""
Process all formulas in paragraph and replace with text and label
:param para_el:
:param sp:
:return:
"""
for ftag in para_el.find_all("formula"):
# get label if exists and insert a space between formula and label
if ftag.label:
label = " " + ftag.label.text
ftag.label.decompose()
else:
label = ""
ftag.replace_with(sp.new_string(f"{ftag.text.strip()}{label}"))
def process_references_in_paragraph(
para_el: bs4.BeautifulSoup, sp: bs4.BeautifulSoup, refs: Dict
) -> Dict:
"""
Process all references in paragraph and generate a dict that contains (type, ref_id, surface_form)
:param para_el:
:param sp:
:param refs:
:return:
"""
tokgen = UniqTokenGenerator("REFTOKEN")
ref_dict = dict()
for rtag in para_el.find_all("ref"):
try:
ref_type = rtag.get("type")
# skip if citation
if ref_type == "bibr":
continue
if ref_type == "table" or ref_type == "figure":
ref_id = rtag.get("target")
if ref_id and normalize_grobid_id(ref_id) in refs:
# normalize reference string
rtag_string = normalize_grobid_id(ref_id)
else:
rtag_string = None
# add to ref set
ref_key = tokgen.next()
ref_dict[ref_key] = (rtag_string, rtag.text.strip(), ref_type)
rtag.replace_with(sp.new_string(f" {ref_key} "))
else:
# replace with surface form
rtag.replace_with(sp.new_string(rtag.text.strip()))
except AttributeError:
continue
return ref_dict
def process_citations_in_paragraph(
para_el: bs4.BeautifulSoup, sp: bs4.BeautifulSoup, bibs: Dict, bracket: bool
) -> Dict:
"""
Process all citations in paragraph and generate a dict for surface forms
:param para_el:
:param sp:
:param bibs:
:param bracket:
:return:
"""
# CHECK if range between two surface forms is appropriate for bracket style expansion
def _get_surface_range(start_surface, end_surface):
span1_match = SINGLE_BRACKET_REGEX.match(start_surface)
span2_match = SINGLE_BRACKET_REGEX.match(end_surface)
if span1_match and span2_match:
# get numbers corresponding to citations
span1_num = int(span1_match.group(1))
span2_num = int(span2_match.group(1))
# expand if range is between 1 and 20
if 1 < span2_num - span1_num < 20:
return span1_num, span2_num
return None
# CREATE BIBREF range between two reference ids, e.g. BIBREF1-BIBREF4 -> BIBREF1 BIBREF2 BIBREF3 BIBREF4
def _create_ref_id_range(start_ref_id, end_ref_id):
start_ref_num = int(start_ref_id[6:])
end_ref_num = int(end_ref_id[6:])
return [f"BIBREF{curr_ref_num}" for curr_ref_num in range(start_ref_num, end_ref_num + 1)]
# CREATE surface form range between two bracket strings, e.g. [1]-[4] -> [1] [2] [3] [4]
def _create_surface_range(start_number, end_number):
return [f"[{n}]" for n in range(start_number, end_number + 1)]
# create citation dict with keywords
cite_map = dict()
tokgen = UniqTokenGenerator("CITETOKEN")
for rtag in para_el.find_all("ref"):
try:
# get surface span, e.g. [3]
surface_span = rtag.text.strip()
# check if target is available (#b2 -> BID2)
if rtag.get("target"):
# normalize reference string
rtag_ref_id = normalize_grobid_id(rtag.get("target"))
# skip if rtag ref_id not in bibliography
if rtag_ref_id not in bibs:
cite_key = tokgen.next()
rtag.replace_with(sp.new_string(f" {cite_key} "))
cite_map[cite_key] = (None, surface_span)
continue
# if bracket style, only keep if surface form is bracket
if bracket:
# valid bracket span
if surface_span and (
surface_span[0] == "["
or surface_span[-1] == "]"
or surface_span[-1] == ","
):
pass
# invalid, replace tag with surface form and continue to next ref tag
else:
rtag.replace_with(sp.new_string(f" {surface_span} "))
continue
# not bracket, add cite span and move on
else:
cite_key = tokgen.next()
rtag.replace_with(sp.new_string(f" {cite_key} "))
cite_map[cite_key] = (rtag_ref_id, surface_span)
continue
# EXTRA PROCESSING FOR BRACKET STYLE CITATIONS; EXPAND RANGES ###
# look backward for range marker, e.g. [1]-*[3]*
backward_between_span = ""
for sib in rtag.previous_siblings:
if sib.name == "ref":
break
elif type(sib) is bs4.NavigableString:
backward_between_span += sib
else:
break
# check if there's a backwards expansion, e.g. need to expand [1]-[3] -> [1] [2] [3]
if is_expansion_string(backward_between_span):
# get surface number range
surface_num_range = _get_surface_range(
rtag.find_previous_sibling("ref").text.strip(), surface_span
)
# if the surface number range is reasonable (range < 20, in order), EXPAND
if surface_num_range:
# delete previous ref tag and anything in between (i.e. delete "-" and extra spaces)
for sib in rtag.previous_siblings:
if sib.name == "ref":
break
elif type(sib) is bs4.NavigableString:
sib.replace_with(sp.new_string(""))
else:
break
# get ref id of previous ref, e.g. [1] (#b0 -> BID0)
previous_rtag = rtag.find_previous_sibling("ref")
previous_rtag_ref_id = normalize_grobid_id(previous_rtag.get("target"))
previous_rtag.decompose()
# replace this ref tag with the full range expansion, e.g. [3] (#b2 -> BID1 BID2)
id_range = _create_ref_id_range(previous_rtag_ref_id, rtag_ref_id)
surface_range = _create_surface_range(
surface_num_range[0], surface_num_range[1]
)
replace_string = ""
for range_ref_id, range_surface_form in zip(id_range, surface_range):
# only replace if ref id is in bibliography, else add none
if range_ref_id in bibs:
cite_key = tokgen.next()
cite_map[cite_key] = (range_ref_id, range_surface_form)
else:
cite_key = tokgen.next()
cite_map[cite_key] = (None, range_surface_form)
replace_string += cite_key + " "
rtag.replace_with(sp.new_string(f" {replace_string} "))
# ELSE do not expand backwards and replace previous and current rtag with appropriate ref id
else:
# add mapping between ref id and surface form for previous ref tag
previous_rtag = rtag.find_previous_sibling("ref")
previous_rtag_ref_id = normalize_grobid_id(previous_rtag.get("target"))
previous_rtag_surface = previous_rtag.text.strip()
cite_key = tokgen.next()
previous_rtag.replace_with(sp.new_string(f" {cite_key} "))
cite_map[cite_key] = (
previous_rtag_ref_id,
previous_rtag_surface,
)
# add mapping between ref id and surface form for current reftag
cite_key = tokgen.next()
rtag.replace_with(sp.new_string(f" {cite_key} "))
cite_map[cite_key] = (rtag_ref_id, surface_span)
else:
# look forward and see if expansion string, e.g. *[1]*-[3]
forward_between_span = ""
for sib in rtag.next_siblings:
if sib.name == "ref":
break
elif type(sib) is bs4.NavigableString:
forward_between_span += sib
else:
break
# look forward for range marker (if is a range, continue -- range will be expanded
# when we get to the second value)
if is_expansion_string(forward_between_span):
continue
# else treat like normal reference
else:
cite_key = tokgen.next()
rtag.replace_with(sp.new_string(f" {cite_key} "))
cite_map[cite_key] = (rtag_ref_id, surface_span)
else:
cite_key = tokgen.next()
rtag.replace_with(sp.new_string(f" {cite_key} "))
cite_map[cite_key] = (None, surface_span)
except AttributeError:
continue
return cite_map
def process_paragraph(
sp: bs4.BeautifulSoup,
para_el: bs4.element.Tag,
section_names: List[Tuple],
bib_dict: Dict,
ref_dict: Dict,
bracket: bool,
) -> Dict:
"""
Process one paragraph
:param sp:
:param para_el:
:param section_names:
:param bib_dict:
:param ref_dict:
:param bracket: if bracket style, expand and clean up citations
:return:
"""
# return empty paragraph if no text
if not para_el.text:
return {
"text": "",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": section_names,
}
# replace formulas with formula text
process_formulas_in_paragraph(para_el, sp)
# get references to tables and figures
ref_map = process_references_in_paragraph(para_el, sp, ref_dict)
# generate citation map for paragraph element (keep only cite spans with bib entry or unlinked)
cite_map = process_citations_in_paragraph(para_el, sp, bib_dict, bracket)
# substitute space characters
para_text = re.sub(r"\s+", " ", para_el.text)
para_text = re.sub(r"\s", " ", para_text)
# get all cite and ref spans
all_spans_to_replace = []
for span in re.finditer(r"(CITETOKEN\d+)", para_text):
uniq_token = span.group()
ref_id, surface_text = cite_map[uniq_token]
all_spans_to_replace.append(
(span.start(), span.start() + len(uniq_token), uniq_token, surface_text)
)
for span in re.finditer(r"(REFTOKEN\d+)", para_text):
uniq_token = span.group()
ref_id, surface_text, ref_type = ref_map[uniq_token]
all_spans_to_replace.append(
(span.start(), span.start() + len(uniq_token), uniq_token, surface_text)
)
# replace cite and ref spans and create json blobs
para_text, all_spans_to_replace = sub_spans_and_update_indices(all_spans_to_replace, para_text)
cite_span_blobs = [
{"start": start, "end": end, "text": surface, "ref_id": cite_map[token][0]}
for start, end, token, surface in all_spans_to_replace
if token.startswith("CITETOKEN")
]
ref_span_blobs = [
{"start": start, "end": end, "text": surface, "ref_id": ref_map[token][0]}
for start, end, token, surface in all_spans_to_replace
if token.startswith("REFTOKEN")
]
for cite_blob in cite_span_blobs:
assert para_text[cite_blob["start"] : cite_blob["end"]] == cite_blob["text"]
for ref_blob in ref_span_blobs:
assert para_text[ref_blob["start"] : ref_blob["end"]] == ref_blob["text"]
return {
"text": para_text,
"cite_spans": cite_span_blobs,
"ref_spans": ref_span_blobs,
"eq_spans": [],
"section": section_names,
}
def extract_abstract_from_tei_xml(
sp: bs4.BeautifulSoup, bib_dict: Dict, ref_dict: Dict, cleanup_bracket: bool
) -> List[Dict]:
"""
Parse abstract from soup
:param sp:
:param bib_dict:
:param ref_dict:
:param cleanup_bracket:
:return:
"""
abstract_text = []
if sp.abstract:
# process all divs
if sp.abstract.div:
for div in sp.abstract.find_all("div"):
if div.text:
if div.p:
for para in div.find_all("p"):
if para.text:
abstract_text.append(
process_paragraph(
sp,
para,
[(None, "Abstract")],
bib_dict,
ref_dict,
cleanup_bracket,
)
)
else:
if div.text:
abstract_text.append(
process_paragraph(
sp,
div,
[(None, "Abstract")],
bib_dict,
ref_dict,
cleanup_bracket,
)
)
# process all paragraphs
elif sp.abstract.p:
for para in sp.abstract.find_all("p"):
if para.text:
abstract_text.append(
process_paragraph(
sp,
para,
[(None, "Abstract")],
bib_dict,
ref_dict,
cleanup_bracket,
)
)
# else just try to get the text
else:
if sp.abstract.text:
abstract_text.append(
process_paragraph(
sp,
sp.abstract,
[(None, "Abstract")],
bib_dict,
ref_dict,
cleanup_bracket,
)
)
sp.abstract.decompose()
return abstract_text
def extract_body_text_from_div(
sp: bs4.BeautifulSoup,
div: bs4.element.Tag,
sections: List[Tuple],
bib_dict: Dict,
ref_dict: Dict,
cleanup_bracket: bool,
) -> List[Dict]:
"""
Parse body text from soup
:param sp:
:param div:
:param sections:
:param bib_dict:
:param ref_dict:
:param cleanup_bracket:
:return:
"""
chunks = []
# check if nested divs; recursively process
if div.div:
for subdiv in div.find_all("div"):
# has header, add to section list and process
if subdiv.head:
chunks += extract_body_text_from_div(
sp,
subdiv,
sections + [(subdiv.head.get("n", None), subdiv.head.text.strip())],
bib_dict,
ref_dict,
cleanup_bracket,
)
subdiv.head.decompose()
# no header, process with same section list
else:
chunks += extract_body_text_from_div(
sp, subdiv, sections, bib_dict, ref_dict, cleanup_bracket
)
# process tags individuals
for tag in div:
try:
if tag.name == "p":
if tag.text:
chunks.append(
process_paragraph(sp, tag, sections, bib_dict, ref_dict, cleanup_bracket)
)
elif tag.name == "formula":
# e.g. <formula xml:id="formula_0">Y = W T X.<label>(1)</label></formula>
label = tag.label.text
tag.label.decompose()
eq_text = tag.text
chunks.append(
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": eq_text,
"eq_num": label,
}
],
"section": sections,
}
)
except AttributeError:
if tag.text:
chunks.append(
process_paragraph(sp, tag, sections, bib_dict, ref_dict, cleanup_bracket)
)
return chunks
def extract_body_text_from_tei_xml(
sp: bs4.BeautifulSoup, bib_dict: Dict, ref_dict: Dict, cleanup_bracket: bool
) -> List[Dict]:
"""
Parse body text from soup
:param sp:
:param bib_dict:
:param ref_dict:
:param cleanup_bracket:
:return:
"""
body_text = []
if sp.body:
body_text = extract_body_text_from_div(
sp, sp.body, [], bib_dict, ref_dict, cleanup_bracket
)
sp.body.decompose()
return body_text
def extract_back_matter_from_tei_xml(
sp: bs4.BeautifulSoup, bib_dict: Dict, ref_dict: Dict, cleanup_bracket: bool
) -> List[Dict]:
"""
Parse back matter from soup
:param sp:
:param bib_dict:
:param ref_dict:
:param cleanup_bracket:
:return:
"""
back_text = []
if sp.back:
for div in sp.back.find_all("div"):
if div.get("type"):
section_type = div.get("type")
else:
section_type = ""
for child_div in div.find_all("div"):
if child_div.head:
section_title = child_div.head.text.strip()
section_num = child_div.head.get("n", None)
child_div.head.decompose()
else:
section_title = section_type
section_num = None
if child_div.text:
if child_div.text:
back_text.append(
process_paragraph(
sp,
child_div,
[(section_num, section_title)],
bib_dict,
ref_dict,
cleanup_bracket,
)
)
sp.back.decompose()
return back_text
|