File size: 8,833 Bytes
ced4316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import json
import os
import uuid
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional
import requests
from bs4 import BeautifulSoup
from .grobid_client import GrobidClient
from .grobid_util import extract_paper_metadata_from_grobid_xml, parse_bibliography
from .s2orc_paper import Paper
from .utils import (
_clean_empty_and_duplicate_authors_from_grobid_parse,
check_if_citations_are_bracket_style,
extract_abstract_from_tei_xml,
extract_back_matter_from_tei_xml,
extract_body_text_from_tei_xml,
extract_figures_and_tables_from_tei_xml,
normalize_grobid_id,
sub_all_note_tags,
)
BASE_TEMP_DIR = "./grobid/temp"
BASE_OUTPUT_DIR = "./grobid/output"
BASE_LOG_DIR = "./grobid/log"
def convert_tei_xml_soup_to_s2orc_json(soup: BeautifulSoup, paper_id: str, pdf_hash: str) -> Paper:
"""
Convert Grobid TEI XML to S2ORC json format
:param soup: BeautifulSoup of XML file content
:param paper_id: name of file
:param pdf_hash: hash of PDF
:return:
"""
# extract metadata
metadata = extract_paper_metadata_from_grobid_xml(soup.fileDesc)
# clean metadata authors (remove dupes etc)
metadata["authors"] = _clean_empty_and_duplicate_authors_from_grobid_parse(metadata["authors"])
# parse bibliography entries (removes empty bib entries)
biblio_entries = parse_bibliography(soup)
bibkey_map = {normalize_grobid_id(bib["ref_id"]): bib for bib in biblio_entries}
# # process formulas and replace with text
# extract_formulas_from_tei_xml(soup)
# extract figure and table captions
refkey_map = extract_figures_and_tables_from_tei_xml(soup)
# get bracket style
is_bracket_style = check_if_citations_are_bracket_style(soup)
# substitute all note tags with p tags
soup = sub_all_note_tags(soup)
# process abstract if possible
abstract_entries = extract_abstract_from_tei_xml(
soup, bibkey_map, refkey_map, is_bracket_style
)
# process body text
body_entries = extract_body_text_from_tei_xml(soup, bibkey_map, refkey_map, is_bracket_style)
# parse back matter (acks, author statements, competing interests, abbrevs etc)
back_matter = extract_back_matter_from_tei_xml(soup, bibkey_map, refkey_map, is_bracket_style)
# form final paper entry
return Paper(
paper_id=paper_id,
pdf_hash=pdf_hash,
metadata=metadata,
abstract=abstract_entries,
body_text=body_entries,
back_matter=back_matter,
bib_entries=bibkey_map,
ref_entries=refkey_map,
)
def convert_tei_xml_file_to_s2orc_json(tei_file: str, pdf_hash: str = "") -> Paper:
"""
Convert a TEI XML file to S2ORC JSON
:param tei_file:
:param pdf_hash:
:return:
"""
if not os.path.exists(tei_file):
raise FileNotFoundError("Input TEI XML file doesn't exist")
paper_id = tei_file.split("/")[-1].split(".")[0]
soup = BeautifulSoup(open(tei_file, "rb").read(), "xml")
paper = convert_tei_xml_soup_to_s2orc_json(soup, paper_id, pdf_hash)
return paper
def process_pdf_stream(
input_file: str, sha: str, input_stream: bytes, grobid_config: Optional[Dict] = None
) -> Dict:
"""
Process PDF stream
:param input_file:
:param sha:
:param input_stream:
:return:
"""
# process PDF through Grobid -> TEI.XML
client = GrobidClient(grobid_config)
tei_text = client.process_pdf_stream(
input_file, input_stream, "temp", "processFulltextDocument"
)
# make soup
soup = BeautifulSoup(tei_text, "xml")
# get paper
paper = convert_tei_xml_soup_to_s2orc_json(soup, input_file, sha)
return paper.release_json("pdf")
def process_pdf_file(
input_file: str,
temp_dir: str = BASE_TEMP_DIR,
output_dir: str = BASE_OUTPUT_DIR,
grobid_config: Optional[Dict] = None,
verbose: bool = True,
) -> str:
"""
Process a PDF file and get JSON representation
:param input_file:
:param temp_dir:
:param output_dir:
:return:
"""
os.makedirs(temp_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
# get paper id as the name of the file
paper_id = ".".join(input_file.split("/")[-1].split(".")[:-1])
tei_file = os.path.join(temp_dir, f"{paper_id}.tei.xml")
output_file = os.path.join(output_dir, f"{paper_id}.json")
# check if input file exists and output file doesn't
if not os.path.exists(input_file):
raise FileNotFoundError(f"{input_file} doesn't exist")
if os.path.exists(output_file):
if verbose:
print(f"{output_file} already exists!")
return output_file
# process PDF through Grobid -> TEI.XML
client = GrobidClient(grobid_config)
# TODO: compute PDF hash
# TODO: add grobid version number to output
client.process_pdf(input_file, temp_dir, "processFulltextDocument")
# process TEI.XML -> JSON
assert os.path.exists(tei_file)
paper = convert_tei_xml_file_to_s2orc_json(tei_file)
# write to file
with open(output_file, "w") as outf:
json.dump(paper.release_json(), outf, indent=4, sort_keys=False)
return output_file
UUID_NAMESPACE = uuid.UUID("bab08d37-ac12-40c4-847a-20ca337742fd")
def paper_url_to_uuid(paper_url: str) -> "uuid.UUID":
return uuid.uuid5(UUID_NAMESPACE, paper_url)
@dataclass
class PDFDownloader:
verbose: bool = True
def download(self, url: str, opath: str | Path) -> Path:
"""Download a pdf file from URL and save locally.
Skip if there is a file at `opath` already.
Parameters
----------
url : str
URL of the target PDF file
opath : str
Path to save downloaded PDF data.
"""
if os.path.exists(opath):
return Path(opath)
if not os.path.exists(os.path.dirname(opath)):
os.makedirs(os.path.dirname(opath), exist_ok=True)
if self.verbose:
print(f"Downloading {url} into {opath}")
with open(opath, "wb") as f:
res = requests.get(url)
f.write(res.content)
return Path(opath)
@dataclass
class FulltextExtractor:
def __call__(self, pdf_file_path: Path | str) -> tuple[str, dict] | None:
"""Extract plain text from a PDf file"""
raise NotImplementedError
@dataclass
class GrobidFulltextExtractor(FulltextExtractor):
tmp_dir: str = "./tmp/grobid"
grobid_config: Optional[Dict] = None
section_seperator: str = "\n\n"
paragraph_seperator: str = "\n"
verbose: bool = True
def construct_plain_text(self, extraction_result: dict) -> str:
section_strings = []
# add the title, if available (consider it as the first section)
title = extraction_result.get("title")
if title and title.strip():
section_strings.append(title.strip())
section_paragraphs: dict[str, list[str]] = extraction_result["sections"]
section_strings.extend(
self.paragraph_seperator.join(
# consider the section title as the first paragraph and
# remove empty paragraphs
filter(lambda s: len(s) > 0, map(lambda s: s.strip(), [section_name] + paragraphs))
)
for section_name, paragraphs in section_paragraphs.items()
)
return self.section_seperator.join(section_strings)
def postprocess_extraction_result(self, extraction_result: dict) -> dict:
# add sections
sections: dict[str, list[str]] = {}
for body_text in extraction_result["pdf_parse"]["body_text"]:
section_name = body_text["section"]
if section_name not in sections.keys():
sections[section_name] = []
sections[section_name] += [body_text["text"]]
extraction_result = {**extraction_result, "sections": sections}
return extraction_result
def __call__(self, pdf_file_path: Path | str) -> tuple[str, dict] | None:
"""Extract plain text from a PDf file"""
try:
extraction_fpath = process_pdf_file(
str(pdf_file_path),
temp_dir=self.tmp_dir,
output_dir=self.tmp_dir,
grobid_config=self.grobid_config,
verbose=self.verbose,
)
with open(extraction_fpath, "r") as f:
extraction_result = json.load(f)
processed_extraction_result = self.postprocess_extraction_result(extraction_result)
plain_text = self.construct_plain_text(processed_extraction_result)
return plain_text, extraction_result
except AssertionError:
print("Grobid failed to parse this document.")
return None
|