File size: 6,131 Bytes
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import logging
import math
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
from pandas import MultiIndex
from pie_modules.documents import TextPairDocumentWithLabeledSpansAndBinaryCorefRelations
from pytorch_ie import DocumentMetric
from pytorch_ie.core.metric import T
from pytorch_ie.utils.hydra import resolve_target
from torchmetrics import Metric, MetricCollection

from src.hydra_callbacks.save_job_return_value import to_py_obj

logger = logging.getLogger(__name__)


def get_num_total(targets: List[int], preds: List[float]):
    return len(targets)


def get_num_positives(targets: List[int], preds: List[float], positive_idx: int = 1):
    return len([v for v in targets if v == positive_idx])


def discretize(
    values: List[float], threshold: Union[float, List[float], dict]
) -> Union[List[float], Dict[Any, List[float]]]:
    if isinstance(threshold, float):
        result = (np.array(values) >= threshold).astype(int).tolist()
        return result
    if isinstance(threshold, list):
        return {t: discretize(values=values, threshold=t) for t in threshold}  # type: ignore
    if isinstance(threshold, dict):
        thresholds = (
            np.arange(threshold["start"], threshold["end"], threshold["step"]).round(4).tolist()
        )
        return discretize(values, threshold=thresholds)
    raise TypeError(f"threshold has unknown type: {threshold}")


class CorefMetricsSKLearn(DocumentMetric):
    DOCUMENT_TYPE = TextPairDocumentWithLabeledSpansAndBinaryCorefRelations

    def __init__(
        self,
        metrics: Dict[str, str],
        thresholds: Optional[Dict[str, float]] = None,
        default_target_idx: int = 0,
        default_prediction_score: float = 0.0,
        show_as_markdown: bool = False,
        markdown_precision: int = 4,
        plot: bool = False,
    ):
        self.metrics = {name: resolve_target(metric) for name, metric in metrics.items()}
        self.thresholds = thresholds or {}
        thresholds_not_in_metrics = {
            name: t for name, t in self.thresholds.items() if name not in self.metrics
        }
        if len(thresholds_not_in_metrics) > 0:
            logger.warning(
                f"there are discretizing thresholds that do not have a metric: {thresholds_not_in_metrics}"
            )
        self.default_target_idx = default_target_idx
        self.default_prediction_score = default_prediction_score
        self.show_as_markdown = show_as_markdown
        self.markdown_precision = markdown_precision
        self.plot = plot

        super().__init__()

    def reset(self) -> None:
        self._preds: List[float] = []
        self._targets: List[int] = []

    def _update(self, document: TextPairDocumentWithLabeledSpansAndBinaryCorefRelations) -> None:
        target_args2idx = {
            (rel.head, rel.tail): int(rel.score) for rel in document.binary_coref_relations
        }
        prediction_args2score = {
            (rel.head, rel.tail): rel.score for rel in document.binary_coref_relations.predictions
        }
        all_args = set(target_args2idx) | set(prediction_args2score)
        all_targets: List[int] = []
        all_predictions: List[float] = []
        for args in all_args:
            target_idx = target_args2idx.get(args, self.default_target_idx)
            prediction_score = prediction_args2score.get(args, self.default_prediction_score)
            all_targets.append(target_idx)
            all_predictions.append(prediction_score)
        # prediction_scores = torch.tensor(all_predictions)
        # target_indices = torch.tensor(all_targets)
        # self.metrics.update(preds=prediction_scores, target=target_indices)
        self._preds.extend(all_predictions)
        self._targets.extend(all_targets)

    def do_plot(self):
        raise NotImplementedError()

        from matplotlib import pyplot as plt

        # Get the number of metrics
        num_metrics = len(self.metrics)

        # Calculate rows and columns for subplots (aim for a square-like layout)
        ncols = math.ceil(math.sqrt(num_metrics))
        nrows = math.ceil(num_metrics / ncols)

        # Create the subplots
        fig, ax_list = plt.subplots(nrows=nrows, ncols=ncols, figsize=(15, 10))

        # Flatten the ax_list if necessary (in case of multiple rows/columns)
        ax_list = ax_list.flatten().tolist()  # Ensure it's a list, and flatten it if necessary

        # Ensure that we pass exactly the number of axes required by metrics
        ax_list = ax_list[:num_metrics]

        # Plot the metrics using the list of axes
        self.metrics.plot(ax=ax_list, together=False)

        # Adjust layout to avoid overlapping plots
        plt.tight_layout()
        plt.show()

    def _compute(self) -> T:

        if self.plot:
            self.do_plot()

        result = {}
        for name, metric in self.metrics.items():

            if name in self.thresholds:
                preds = discretize(values=self._preds, threshold=self.thresholds[name])
            else:
                preds = self._preds
            if isinstance(preds, dict):
                metric_results = {
                    t: metric(self._targets, t_preds) for t, t_preds in preds.items()
                }
                # just get the max
                max_t, max_v = max(metric_results.items(), key=lambda k_v: k_v[1])
                result[f"{name}-{max_t}"] = max_v
            else:
                result[name] = metric(self._targets, preds)

        result = to_py_obj(result)
        if self.show_as_markdown:
            import pandas as pd

            series = pd.Series(result)
            if isinstance(series.index, MultiIndex):
                if len(series.index.levels) > 1:
                    # in fact, this is not a series anymore
                    series = series.unstack(-1)
                else:
                    series.index = series.index.get_level_values(0)
            logger.info(
                f"{self.current_split}\n{series.round(self.markdown_precision).to_markdown()}"
            )
        return result