File size: 13,523 Bytes
3133b5e
 
 
 
 
 
 
 
 
 
 
ced4316
e7eaeed
ced4316
 
e7eaeed
 
 
3133b5e
e7eaeed
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
e7eaeed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7eaeed
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
 
 
 
3133b5e
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
 
3133b5e
 
e7eaeed
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import pyrootutils

root = pyrootutils.setup_root(
    search_from=__file__,
    indicator=[".project-root"],
    pythonpath=True,
    dotenv=True,
)

import argparse
import logging
import os
from typing import Dict, List, Optional, Tuple

import pandas as pd
from pie_datasets import Dataset, DatasetDict
from pytorch_ie import Annotation
from pytorch_ie.annotations import BinaryRelation, MultiSpan, Span

from document.types import (
    RelatedRelation,
    TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations,
)
from src.demo.retriever_utils import (
    retrieve_all_relevant_spans,
    retrieve_all_relevant_spans_for_all_documents,
    retrieve_relevant_spans,
)
from src.langchain_modules import DocumentAwareSpanRetrieverWithRelations

logger = logging.getLogger(__name__)


def get_original_doc_id_and_offsets(doc_id: str) -> Tuple[str, int, Optional[int]]:
    original_doc_id, middle, start_end, ext = doc_id.split(".")
    if middle == "remaining":
        return original_doc_id, int(start_end), None
    elif middle == "abstract":
        start, end = start_end.split("_")
        return original_doc_id, int(start), int(end)
    else:
        raise ValueError(f"unexpected doc_id format: {doc_id}")


def add_base_annotations(
    documents: Dict[
        str, TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations
    ],
    retrieved_doc_ids: List[str],
    retriever: DocumentAwareSpanRetrieverWithRelations,
) -> Dict[Tuple[str, Annotation], Tuple[str, Annotation]]:
    # (retrieved_doc_id, retrieved_annotation) -> (original_doc_id, original_annotation)
    annotation_mapping = {}
    for retrieved_doc_id in retrieved_doc_ids:
        pie_doc = retriever.get_document(retrieved_doc_id).metadata["pie_document"].copy()
        original_doc_id, offset, _ = get_original_doc_id_and_offsets(retrieved_doc_id)
        document = documents[original_doc_id]
        span_mapping = {}
        for span in pie_doc.labeled_multi_spans.predictions:
            if isinstance(span, MultiSpan):
                new_span = span.copy(
                    slices=[(start + offset, end + offset) for start, end in span.slices]
                )
            elif isinstance(span, Span):
                new_span = span.copy(start=span.start + offset, end=span.end + offset)
            else:
                raise ValueError(f"unexpected span type: {span}")
            span_mapping[span] = new_span
        document.labeled_multi_spans.predictions.extend(span_mapping.values())
        for relation in pie_doc.binary_relations.predictions:
            new_relation = relation.copy(
                head=span_mapping[relation.head], tail=span_mapping[relation.tail]
            )
            document.binary_relations.predictions.append(new_relation)
        for old_ann, new_ann in span_mapping.items():
            annotation_mapping[(retrieved_doc_id, old_ann)] = (original_doc_id, new_ann)

    return annotation_mapping


def get_doc_and_span_id2annotation_mapping(
    span_ids: pd.Series,
    doc_ids: pd.Series,
    retriever: DocumentAwareSpanRetrieverWithRelations,
    base_annotation_mapping: Dict[Tuple[str, Annotation], Tuple[str, Annotation]],
) -> Dict[Tuple[str, str], Tuple[str, Annotation]]:
    if len(doc_ids) != len(span_ids):
        raise ValueError("doc_ids and span_ids must have the same length")
    doc_and_span_ids = zip(doc_ids.tolist(), span_ids.tolist())
    return {
        (doc_id, span_id): base_annotation_mapping[(doc_id, retriever.get_span_by_id(span_id))]
        for doc_id, span_id in set(doc_and_span_ids)
    }


def add_result_to_gold_data(
    result: pd.DataFrame,
    gold_dataset_dir: str,
    dataset_out_dir: str,
    retriever: DocumentAwareSpanRetrieverWithRelations,
    split: Optional[str] = None,
    link_relation_label: str = "semantically_same",
    reversed_relation_suffix: str = "_reversed",
):

    if not os.path.exists(gold_dataset_dir):
        raise ValueError(f"gold dataset directory does not exist: {gold_dataset_dir}")

    dataset_dict = DatasetDict.from_json(data_dir=gold_dataset_dir)
    if split is None and len(dataset_dict) == 1:
        split = list(dataset_dict.keys())[0]
    if split is None:
        raise ValueError("need to provide split name to add results to gold dataset")

    dataset = dataset_dict[split]

    doc_id2doc = {doc.id: doc for doc in dataset}
    retriever_doc_ids = (
        result["doc_id"].unique().tolist() + result["query_doc_id"].unique().tolist()
    )
    base_annotation_mapping = add_base_annotations(
        documents=doc_id2doc, retrieved_doc_ids=retriever_doc_ids, retriever=retriever
    )
    # (retriever_doc_id, retriever_span_id) -> (original_doc_id, original_span)
    doc_and_span_id2annotation = {}
    doc_and_span_id2annotation.update(
        get_doc_and_span_id2annotation_mapping(
            span_ids=result["span_id"],
            doc_ids=result["doc_id"],
            retriever=retriever,
            base_annotation_mapping=base_annotation_mapping,
        )
    )
    doc_and_span_id2annotation.update(
        get_doc_and_span_id2annotation_mapping(
            span_ids=result["ref_span_id"],
            doc_ids=result["doc_id"],
            retriever=retriever,
            base_annotation_mapping=base_annotation_mapping,
        )
    )
    doc_and_span_id2annotation.update(
        get_doc_and_span_id2annotation_mapping(
            span_ids=result["query_span_id"],
            doc_ids=result["query_doc_id"],
            retriever=retriever,
            base_annotation_mapping=base_annotation_mapping,
        )
    )
    doc_id2head_tail2relation = {}
    for doc_id, doc in doc_id2doc.items():
        head_and_tail2relation = {}
        for relation in doc.binary_relations.predictions:
            head_and_tail2relation[(relation.head, relation.tail)] = relation
        doc_id2head_tail2relation[doc_id] = head_and_tail2relation

    for row in result.itertuples():
        query_doc_id, query_span = doc_and_span_id2annotation[
            (row.query_doc_id, row.query_span_id)
        ]
        doc_id, span = doc_and_span_id2annotation[(row.doc_id, row.span_id)]
        doc_id2, ref_span = doc_and_span_id2annotation[(row.doc_id, row.ref_span_id)]
        if doc_id != query_doc_id:
            raise ValueError("doc_id and query_doc_id must be the same")
        if doc_id != doc_id2:
            raise ValueError("doc_id and ref_doc_id must be the same")
        doc = doc_id2doc[doc_id]
        link_rel = BinaryRelation(
            head=query_span, tail=ref_span, label=link_relation_label, score=row.sim_score
        )
        doc.binary_relations.predictions.append(link_rel)
        head_and_tail2relation = doc_id2head_tail2relation[doc_id]
        related_rel_label = row.type
        if related_rel_label.endswith(reversed_relation_suffix):
            base_rel = head_and_tail2relation[(span, ref_span)]
        else:
            base_rel = head_and_tail2relation[(ref_span, span)]
        related_rel = RelatedRelation(
            head=query_span,
            tail=span,
            link_relation=link_rel,
            relation=base_rel,
            label=related_rel_label,
            score=link_rel.score * base_rel.score,
        )
        doc.related_relations.predictions.append(related_rel)

    dataset = Dataset.from_documents(list(doc_id2doc.values()))
    dataset_dict = DatasetDict({split: dataset})
    if not os.path.exists(dataset_out_dir):
        os.makedirs(dataset_out_dir, exist_ok=True)

    dataset_dict.to_json(dataset_out_dir)


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-c",
        "--config_path",
        type=str,
        default="configs/retriever/related_span_retriever_with_relations_from_other_docs.yaml",
    )
    parser.add_argument(
        "--data_path",
        type=str,
        required=True,
        help="Path to a zip or directory containing a retriever dump.",
    )
    parser.add_argument("-k", "--top_k", type=int, default=10)
    parser.add_argument("-t", "--threshold", type=float, default=0.95)
    parser.add_argument(
        "-o",
        "--output_path",
        type=str,
        required=True,
    )
    parser.add_argument(
        "--query_doc_id",
        type=str,
        default=None,
        help="If provided, retrieve all spans for only this query document.",
    )
    parser.add_argument(
        "--query_span_id",
        type=str,
        default=None,
        help="If provided, retrieve all spans for only this query span.",
    )
    parser.add_argument(
        "--doc_id_whitelist",
        type=str,
        nargs="+",
        default=None,
        help="If provided, only consider documents with these IDs.",
    )
    parser.add_argument(
        "--doc_id_blacklist",
        type=str,
        nargs="+",
        default=None,
        help="If provided, ignore documents with these IDs.",
    )
    parser.add_argument(
        "--query_target_doc_id_pairs",
        type=str,
        nargs="+",
        default=None,
        help="One or more pairs of query and target document IDs "
        '(each separated by ":") to retrieve spans for. If provided, '
        "--query_doc_id and --query_span_id are ignored.",
    )
    parser.add_argument(
        "--gold_dataset_dir",
        type=str,
        default=None,
        help="If provided, add the spans and base relations from the retriever data as well "
        "as the related relations to the gold dataset.",
    )
    parser.add_argument(
        "--dataset_out_dir",
        type=str,
        default=None,
        help="If provided, save the enriched gold dataset to this directory.",
    )
    args = parser.parse_args()

    logging.basicConfig(
        format="%(asctime)s %(levelname)-8s %(message)s",
        level=logging.INFO,
        datefmt="%Y-%m-%d %H:%M:%S",
    )

    if not args.output_path.endswith(".json"):
        raise ValueError("only support json output")

    logger.info(f"instantiating retriever from {args.config_path}...")
    retriever = DocumentAwareSpanRetrieverWithRelations.instantiate_from_config_file(
        args.config_path
    )
    logger.info(f"loading data from {args.data_path}...")
    retriever.load_from_disc(args.data_path)

    search_kwargs = {"k": args.top_k, "score_threshold": args.threshold}
    if args.doc_id_whitelist is not None:
        search_kwargs["doc_id_whitelist"] = args.doc_id_whitelist
    if args.doc_id_blacklist is not None:
        search_kwargs["doc_id_blacklist"] = args.doc_id_blacklist
    logger.info(f"use search_kwargs: {search_kwargs}")

    if args.query_target_doc_id_pairs is not None:
        all_spans_for_all_documents = None
        for doc_id_pair in args.query_target_doc_id_pairs:
            query_doc_id, target_doc_id = doc_id_pair.split(":")
            current_result = retrieve_all_relevant_spans(
                retriever=retriever,
                query_doc_id=query_doc_id,
                doc_id_whitelist=[target_doc_id],
                **search_kwargs,
            )
            if current_result is None:
                logger.warning(
                    f"no relevant spans found for query_doc_id={query_doc_id} and "
                    f"target_doc_id={target_doc_id}"
                )
                continue
            logger.info(
                f"retrieved {len(current_result)} spans for query_doc_id={query_doc_id} "
                f"and target_doc_id={target_doc_id}"
            )
            current_result["query_doc_id"] = query_doc_id
            if all_spans_for_all_documents is None:
                all_spans_for_all_documents = current_result
            else:
                all_spans_for_all_documents = pd.concat(
                    [all_spans_for_all_documents, current_result], ignore_index=True
                )

    elif args.query_span_id is not None:
        logger.warning(f"retrieving results for single span: {args.query_span_id}")
        all_spans_for_all_documents = retrieve_relevant_spans(
            retriever=retriever, query_span_id=args.query_span_id, **search_kwargs
        )
    elif args.query_doc_id is not None:
        logger.warning(f"retrieving results for single document: {args.query_doc_id}")
        all_spans_for_all_documents = retrieve_all_relevant_spans(
            retriever=retriever, query_doc_id=args.query_doc_id, **search_kwargs
        )
    else:
        all_spans_for_all_documents = retrieve_all_relevant_spans_for_all_documents(
            retriever=retriever, **search_kwargs
        )

    if all_spans_for_all_documents is None:
        logger.warning("no relevant spans found in any document")
        exit(0)

    logger.info(f"dumping results ({len(all_spans_for_all_documents)}) to {args.output_path}...")
    os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
    all_spans_for_all_documents.to_json(args.output_path)

    if args.gold_dataset_dir is not None:
        logger.info(
            f"reading gold data from {args.gold_dataset_dir} and adding results as predictions ..."
        )
        if args.dataset_out_dir is None:
            raise ValueError("need to provide --dataset_out_dir to save the enriched dataset")
        add_result_to_gold_data(
            all_spans_for_all_documents,
            gold_dataset_dir=args.gold_dataset_dir,
            dataset_out_dir=args.dataset_out_dir,
            retriever=retriever,
        )

    logger.info("done")