Ari1020 commited on
Commit
69ec68a
·
verified ·
1 Parent(s): 4403765

test with google/flan-t5-small

Browse files
Files changed (1) hide show
  1. app.py +14 -27
app.py CHANGED
@@ -1,20 +1,9 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
- #client = InferenceClient("deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B")
9
- #client = InferenceClient("microsoft/MAI-DS-R1") ERROR
10
- #client = InferenceClient("meta-llama/Llama-3.1-8B-Instruct") ERROR
11
- #client = InferenceClient("nvidia/Nemotron-H-47B-Base-8K") ERROR
12
- #client = InferenceClient("meta-llama/Llama-3.2-1B") TIMES OUT
13
- #client = InferenceClient("CohereLabs/c4ai-command-a-03-2025") ERROR
14
- #client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") TIMES OUT
15
- #client = InferenceClient("meta-llama/Llama-3.2-1B-Instruct") TIMES OUT
16
- client = InferenceClient(model="prompthero/openjourney-v4")
17
 
 
 
 
18
 
19
  def respond(
20
  message,
@@ -35,20 +24,18 @@ def respond(
35
 
36
  messages.append({"role": "user", "content": message})
37
 
38
- response = ""
39
-
40
- for message in client.chat_completion(
41
- messages,
42
- max_tokens=max_tokens,
43
- stream=True,
44
- temperature=temperature,
45
- top_p=top_p,
46
- ):
47
- token = message.choices[0].delta.content
48
 
49
- response += token
50
- yield response
 
 
51
 
 
52
 
53
  """
54
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
 
1
  import gradio as gr
2
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ # Initialize the T5 model and tokenizer
5
+ tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
6
+ model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small")
7
 
8
  def respond(
9
  message,
 
24
 
25
  messages.append({"role": "user", "content": message})
26
 
27
+ # Create a prompt for the T5 model
28
+ prompt = "translate English to Italian: "
29
+ for message in messages:
30
+ prompt += message["content"] + " "
31
+ prompt = prompt.strip()
 
 
 
 
 
32
 
33
+ # Generate a response using the T5 model
34
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
35
+ outputs = model.generate(input_ids, max_length=max_tokens, temperature=temperature, top_p=top_p)
36
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
37
 
38
+ return response
39
 
40
  """
41
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface