File size: 6,573 Bytes
990eebb
 
 
 
 
ec909a7
 
 
 
 
 
 
 
 
990eebb
ec909a7
990eebb
eee9f98
ec909a7
 
 
 
 
 
 
 
 
 
 
990eebb
 
 
 
 
 
 
25d1299
 
990eebb
 
 
 
 
 
 
 
 
25d1299
 
 
 
 
 
 
 
 
 
 
 
 
 
990eebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25d1299
990eebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af3bd4e
5315878
 
 
 
 
 
 
eee9f98
 
af3bd4e
5315878
 
 
 
 
 
 
 
eee9f98
 
990eebb
 
 
 
 
 
eee9f98
990eebb
 
 
 
 
 
25d1299
 
eee9f98
 
25d1299
990eebb
 
 
 
25d1299
990eebb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from share_btn import community_icon_html, loading_icon_html, share_js

import os, subprocess
import torch

# def setup():
#     install_cmds = [
#         ['pip', 'install', 'ftfy', 'gradio', 'regex', 'tqdm', 'transformers==4.21.2', 'timm', 'fairscale', 'requests'],
#         ['pip', 'install', 'open_clip_torch'],
#         ['pip', 'install', '-e', 'git+https://github.com/pharmapsychotic/BLIP.git@lib#egg=blip'],
#         ['git', 'clone', '-b', 'open-clip', 'https://github.com/pharmapsychotic/clip-interrogator.git']
#     ]
#     for cmd in install_cmds:
#         print(subprocess.run(cmd, stdout=subprocess.PIPE).stdout.decode('utf-8'))

# setup()

# download cache files
# print("Download preprocessed cache files...")
# CACHE_URLS = [
#     'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_artists.pkl',
#     'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_flavors.pkl',
#     'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_mediums.pkl',
#     'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_movements.pkl',
#     'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_trendings.pkl',
# ]
# os.makedirs('cache', exist_ok=True)
# for url in CACHE_URLS:
#     print(subprocess.run(['wget', url, '-P', 'cache'], stdout=subprocess.PIPE).stdout.decode('utf-8'))

import sys
sys.path.append('src/blip')
sys.path.append('clip-interrogator')

import gradio as gr
from clip_interrogator import Config, Interrogator
import io 
from PIL import Image
config = Config()
config.device = 'cuda' if torch.cuda.is_available() else 'cpu'
config.blip_offload = False if torch.cuda.is_available() else True
config.chunk_size = 2048
config.flavor_intermediate_count = 512
config.blip_num_beams = 64

ci = Interrogator(config)

def inference(input_images, mode, best_max_flavors):
    # Process each image in the list and generate prompt results
    prompt_results = []
    for image_bytes in input_images:
        image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
        if mode == 'best':
            prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors))
        elif mode == 'classic':
            prompt_result = ci.interrogate_classic(image)
        else:
            prompt_result = ci.interrogate_fast(image)
        prompt_results.append((image, prompt_result))  # Use dictionary to set image labels
    return prompt_results


title = """
    <div style="text-align: center; max-width: 500px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
            margin-bottom: 10px;
        "
        >
        <h1 style="font-weight: 600; margin-bottom: 7px;">
            CLIP Interrogator 2.1
        </h1>
        </div>
        <p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;">
        Want to figure out what a good prompt might be to create new images like an existing one? 
        <br />The CLIP Interrogator is here to get you answers!
        <br />This version is specialized for producing nice prompts for use with Stable Diffusion 2.0 using the ViT-H-14 OpenCLIP model!
        </p>
    </div>
"""

article = """
<div style="text-align: center; max-width: 500px; margin: 0 auto;font-size: 94%;">
    
    <p>
    Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/open-clip/clip_interrogator.ipynb">Google Colab</a>
    </p>
    <p>
    Has this been helpful to you? Follow Pharma on twitter 
    <a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a> 
    and check out more tools at his
    <a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a>
    </p>
</div>
"""

css = '''
#col-container {width: width: 80%;; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
    animation: spin 1s linear infinite;
}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
#gallery .caption-label {
    font-size: 15px !important;
    right: 0 !important;
    max-width: 100% !important;
    text-overflow: clip !important;
    white-space: normal !important;
    overflow: auto !important;
    height: 20% !important;
}

#gallery .caption {
    padding: var(--size-2) var(--size-3) !important;
    text-overflow: clip !important;
    white-space: normal !important; /* Allows the text to wrap */
    color: var(--block-label-text-color) !important;
    font-weight: var(--weight-semibold) !important;
    text-align: center !important;
    height: 100% !important;
    font-size: 17px !important;
}

'''

with gr.Blocks(css=css) as block:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)

        input_image = gr.Files(label = "Inputs", file_count="multiple", type='bytes', elem_id='inputs')
        with gr.Row():
            mode_input = gr.Radio(['best', 'classic', 'fast'], label='Select mode', value='best')
            flavor_input = gr.Slider(minimum=2, maximum=24, step=2, value=4, label='best mode max flavors')
        
        submit_btn = gr.Button("Submit")
        
        # rows, cols = NUM_IMAGES //3, 
        gallery = gr.Gallery(
            label="Outputs", show_label=True, elem_id="gallery", object_fit="contain", height="auto"
        )

        with gr.Group(elem_id="share-btn-container"):
            loading_icon = gr.HTML(loading_icon_html, visible=False)

        gr.HTML(article)
    submit_btn.click(fn=inference, inputs=[input_image,mode_input,flavor_input], outputs=[gallery], api_name="clipi2")

    
block.queue(max_size=32,concurrency_count=10).launch(show_api=False)