Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
import torch
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
|
7 |
+
def visualize_attention(model_name, sentence):
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModel.from_pretrained(model_name, output_attentions=True)
|
10 |
+
|
11 |
+
inputs = tokenizer(sentence, return_tensors='pt')
|
12 |
+
outputs = model(**inputs)
|
13 |
+
attentions = outputs.attentions # tuple of (layer, batch, head, seq_len, seq_len)
|
14 |
+
|
15 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
|
16 |
+
|
17 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
18 |
+
sns.heatmap(attentions[-1][0][0].detach().numpy(),
|
19 |
+
xticklabels=tokens,
|
20 |
+
yticklabels=tokens,
|
21 |
+
cmap="viridis",
|
22 |
+
ax=ax)
|
23 |
+
ax.set_title(f"Attention Map - Layer {len(attentions)} Head 1")
|
24 |
+
plt.xticks(rotation=90)
|
25 |
+
plt.yticks(rotation=0)
|
26 |
+
|
27 |
+
return fig
|
28 |
+
|
29 |
+
model_list = [
|
30 |
+
"bert-base-uncased",
|
31 |
+
"roberta-base",
|
32 |
+
"distilbert-base-uncased"
|
33 |
+
]
|
34 |
+
|
35 |
+
iface = gr.Interface(
|
36 |
+
fn=visualize_attention,
|
37 |
+
inputs=[
|
38 |
+
gr.Dropdown(choices=model_list, label="Choose Transformer Model"),
|
39 |
+
gr.Textbox(label="Enter Input Sentence")
|
40 |
+
],
|
41 |
+
outputs=gr.Plot(label="Attention Map"),
|
42 |
+
title="Transformer Attention Visualizer",
|
43 |
+
description="Visualize attention heads of transformer models. Select a model and input text to see attention heatmaps."
|
44 |
+
)
|
45 |
+
|
46 |
+
iface.launch()
|