Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,46 +5,99 @@ import faiss
|
|
5 |
import numpy as np
|
6 |
from transformers import pipeline
|
7 |
|
|
|
8 |
dataset = load_dataset("lex_glue", "scotus")
|
9 |
-
|
10 |
-
|
11 |
|
12 |
embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
13 |
corpus_embeddings = embedder.encode(corpus, convert_to_numpy=True)
|
14 |
|
|
|
15 |
dimension = corpus_embeddings.shape[1]
|
16 |
index = faiss.IndexFlatL2(dimension)
|
17 |
index.add(corpus_embeddings)
|
18 |
|
|
|
19 |
gen_pipeline = pipeline("text2text-generation", model="facebook/bart-large-cnn")
|
20 |
|
|
|
21 |
def rag_query(user_question):
|
22 |
question_embedding = embedder.encode([user_question])
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
prompt = f"Question: {user_question}\nContext: {context}\nAnswer:"
|
27 |
result = gen_pipeline(prompt, max_length=250, do_sample=False)[0]['generated_text']
|
28 |
return result
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
iface = gr.Interface(
|
37 |
fn=chatbot_interface,
|
38 |
-
inputs=
|
39 |
-
|
40 |
-
gr.State([]) # Session state to store history
|
41 |
-
],
|
42 |
-
outputs=[
|
43 |
-
gr.Textbox(label="Chat History", lines=20, interactive=False),
|
44 |
-
gr.State()
|
45 |
-
],
|
46 |
title="π§ββοΈ Legal Assistant Chatbot",
|
47 |
-
description="Ask legal questions based on case data (LexGLUE - SCOTUS subset).
|
|
|
|
|
48 |
)
|
49 |
|
|
|
50 |
iface.launch()
|
|
|
5 |
import numpy as np
|
6 |
from transformers import pipeline
|
7 |
|
8 |
+
|
9 |
dataset = load_dataset("lex_glue", "scotus")
|
10 |
+
corpus = [doc['text'] for doc in dataset['train'].select(range(200))]
|
11 |
+
|
12 |
|
13 |
embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
14 |
corpus_embeddings = embedder.encode(corpus, convert_to_numpy=True)
|
15 |
|
16 |
+
|
17 |
dimension = corpus_embeddings.shape[1]
|
18 |
index = faiss.IndexFlatL2(dimension)
|
19 |
index.add(corpus_embeddings)
|
20 |
|
21 |
+
|
22 |
gen_pipeline = pipeline("text2text-generation", model="facebook/bart-large-cnn")
|
23 |
|
24 |
+
|
25 |
def rag_query(user_question):
|
26 |
question_embedding = embedder.encode([user_question])
|
27 |
+
k = 3
|
28 |
+
if index.ntotal < k:
|
29 |
+
k = index.ntotal
|
30 |
+
_, indices = index.search(np.array(question_embedding), k=k)
|
31 |
+
|
32 |
+
if len(indices[0]) == 0:
|
33 |
+
return "Sorry, no relevant documents were found."
|
34 |
+
|
35 |
+
context = " ".join([corpus[i] for i in indices[0] if i < len(corpus)])
|
36 |
+
|
37 |
prompt = f"Question: {user_question}\nContext: {context}\nAnswer:"
|
38 |
result = gen_pipeline(prompt, max_length=250, do_sample=False)[0]['generated_text']
|
39 |
return result
|
40 |
|
41 |
+
|
42 |
+
def chatbot_interface(query):
|
43 |
+
return rag_query(query)
|
44 |
+
|
45 |
+
|
46 |
+
css = """
|
47 |
+
.gradio-container {
|
48 |
+
background-color: #f0f4f8;
|
49 |
+
font-family: Arial, sans-serif;
|
50 |
+
}
|
51 |
+
.gradio-input {
|
52 |
+
background-color: #ffffff;
|
53 |
+
border-radius: 5px;
|
54 |
+
border: 1px solid #d1d1d1;
|
55 |
+
font-size: 16px;
|
56 |
+
padding: 10px;
|
57 |
+
}
|
58 |
+
.gradio-button {
|
59 |
+
background-color: #4CAF50;
|
60 |
+
color: white;
|
61 |
+
border-radius: 5px;
|
62 |
+
border: none;
|
63 |
+
padding: 10px 20px;
|
64 |
+
font-size: 16px;
|
65 |
+
}
|
66 |
+
.gradio-button:hover {
|
67 |
+
background-color: #45a049;
|
68 |
+
}
|
69 |
+
.gradio-output {
|
70 |
+
background-color: #ffffff;
|
71 |
+
border-radius: 5px;
|
72 |
+
padding: 15px;
|
73 |
+
font-size: 16px;
|
74 |
+
border: 1px solid #d1d1d1;
|
75 |
+
}
|
76 |
+
.gradio-title {
|
77 |
+
font-size: 28px;
|
78 |
+
font-weight: bold;
|
79 |
+
color: #333333;
|
80 |
+
text-align: center;
|
81 |
+
margin-bottom: 20px;
|
82 |
+
}
|
83 |
+
.gradio-description {
|
84 |
+
font-size: 16px;
|
85 |
+
color: #666666;
|
86 |
+
text-align: center;
|
87 |
+
margin-bottom: 30px;
|
88 |
+
}
|
89 |
+
"""
|
90 |
+
|
91 |
|
92 |
iface = gr.Interface(
|
93 |
fn=chatbot_interface,
|
94 |
+
inputs="text",
|
95 |
+
outputs="text",
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
title="π§ββοΈ Legal Assistant Chatbot",
|
97 |
+
description="Ask legal questions based on case data (LexGLUE - SCOTUS subset). Get answers derived from relevant court case texts.",
|
98 |
+
theme="compact",
|
99 |
+
css=css
|
100 |
)
|
101 |
|
102 |
+
|
103 |
iface.launch()
|