Spaces:
Runtime error
Runtime error
File size: 17,420 Bytes
c4ca5b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import streamlit as st
import javalang
import torch
import torch.nn as nn
import torch.nn.functional as F
import re
import numpy as np
import networkx as nx
from transformers import AutoTokenizer, AutoModel
from torch_geometric.data import Data
from torch_geometric.nn import GCNConv
import warnings
import pandas as pd
import zipfile
import os
from collections import defaultdict
# Set up page config
st.set_page_config(
page_title="Advanced Java Code Clone Detector (IJaDataset 2.1)",
page_icon="π",
layout="wide"
)
# Suppress warnings
warnings.filterwarnings("ignore")
# Constants
MODEL_NAME = "microsoft/codebert-base"
MAX_LENGTH = 512
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DATASET_PATH = "archive (1).zip" # Update this path if needed
# Initialize models with caching
@st.cache_resource
def load_models():
try:
# Load CodeBERT for semantic analysis
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
code_model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE)
# Initialize RNN model
class RNNModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(RNNModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(DEVICE)
out, _ = self.rnn(x, h0)
out = self.fc(out[:, -1, :])
return out
rnn_model = RNNModel(input_size=768, hidden_size=256, num_layers=2).to(DEVICE)
# Initialize GNN model
class GNNModel(nn.Module):
def __init__(self, node_features):
super(GNNModel, self).__init__()
self.conv1 = GCNConv(node_features, 128)
self.conv2 = GCNConv(128, 64)
self.fc = nn.Linear(64, 1)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
x = self.fc(x)
return torch.sigmoid(x.mean())
gnn_model = GNNModel(node_features=128).to(DEVICE)
return tokenizer, code_model, rnn_model, gnn_model
except Exception as e:
st.error(f"Failed to load models: {str(e)}")
return None, None, None, None
@st.cache_resource
def load_dataset():
try:
# Extract dataset if needed
if not os.path.exists("Diverse_100K_Dataset"):
with zipfile.ZipFile(DATASET_PATH, 'r') as zip_ref:
zip_ref.extractall(".")
# Load sample pairs (modify this based on your dataset structure)
clone_pairs = []
base_path = "Subject_CloneTypes_Directories"
# Load pairs from all clone types
for clone_type in ["Clone_Type1", "Clone_Type2", "Clone_Type3 - ST", "Clone_Type4"]:
type_path = os.path.join(base_path, clone_type)
if os.path.exists(type_path):
for root, _, files in os.walk(type_path):
if files:
# Take first two files as a pair
if len(files) >= 2:
with open(os.path.join(root, files[0]), 'r', encoding='utf-8') as f1:
code1 = f1.read()
with open(os.path.join(root, files[1]), 'r', encoding='utf-8') as f2:
code2 = f2.read()
clone_pairs.append({
"type": clone_type,
"code1": code1,
"code2": code2
})
break # Just take one pair per type for demo
return clone_pairs[:10] # Return first 10 pairs for demo
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
return []
tokenizer, code_model, rnn_model, gnn_model = load_models()
dataset_pairs = load_dataset()
# AST Processing Functions
def parse_ast(code):
try:
tokens = javalang.tokenizer.tokenize(code)
parser = javalang.parser.Parser(tokens)
tree = parser.parse()
return tree
except Exception as e:
st.warning(f"AST parsing error: {str(e)}")
return None
def build_ast_graph(ast_tree):
if not ast_tree:
return None
G = nx.DiGraph()
node_id = 0
node_map = {}
def traverse(node, parent_id=None):
nonlocal node_id
current_id = node_id
node_label = str(type(node).__name__)
node_map[current_id] = {'type': node_label, 'node': node}
G.add_node(current_id, type=node_label)
if parent_id is not None:
G.add_edge(parent_id, current_id)
node_id += 1
for child in node.children:
if isinstance(child, javalang.ast.Node):
traverse(child, current_id)
elif isinstance(child, (list, tuple)):
for item in child:
if isinstance(item, javalang.ast.Node):
traverse(item, current_id)
traverse(ast_tree)
return G, node_map
def ast_to_pyg_data(ast_graph):
if not ast_graph:
return None
# Convert AST to PyTorch Geometric Data format
node_features = []
node_types = []
for node in ast_graph.nodes():
node_type = ast_graph.nodes[node]['type']
node_types.append(node_type)
# Simple one-hot encoding of node types (in practice, use better encoding)
feature = [0] * 50 # Assuming max 50 node types
feature[hash(node_type) % 50] = 1
node_features.append(feature)
# Convert networkx graph to edge_index format
edge_index = list(ast_graph.edges())
if not edge_index:
# Add self-loop if no edges
edge_index = [(0, 0)]
edge_index = torch.tensor(edge_index, dtype=torch.long).t().contiguous()
x = torch.tensor(node_features, dtype=torch.float)
return Data(x=x, edge_index=edge_index)
# Normalization function
def normalize_code(code):
try:
code = re.sub(r'//.*', '', code) # Remove single-line comments
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL) # Multi-line comments
code = re.sub(r'\s+', ' ', code).strip() # Normalize whitespace
return code
except Exception:
return code
# Feature extraction functions
def get_lexical_features(code):
"""Extract lexical features (for Type-1 and Type-2 clones)"""
normalized = normalize_code(code)
tokens = re.findall(r'\b\w+\b', normalized)
return {
'token_count': len(tokens),
'unique_tokens': len(set(tokens)),
'avg_token_length': np.mean([len(t) for t in tokens]) if tokens else 0
}
def get_syntactic_features(ast_tree):
"""Extract syntactic features (for Type-3 clones)"""
if not ast_tree:
return {}
# Count different node types in AST
node_counts = defaultdict(int)
def count_nodes(node):
node_counts[type(node).__name__] += 1
for child in node.children:
if isinstance(child, javalang.ast.Node):
count_nodes(child)
elif isinstance(child, (list, tuple)):
for item in child:
if isinstance(item, javalang.ast.Node):
count_nodes(item)
count_nodes(ast_tree)
return dict(node_counts)
def get_semantic_features(code):
"""Extract semantic features (for Type-4 clones)"""
embedding = get_embedding(code)
return embedding.cpu().numpy().flatten() if embedding is not None else None
# Embedding generation
def get_embedding(code):
try:
code = normalize_code(code)
inputs = tokenizer(
code,
return_tensors="pt",
truncation=True,
max_length=MAX_LENGTH,
padding='max_length'
).to(DEVICE)
with torch.no_grad():
outputs = code_model(**inputs)
return outputs.last_hidden_state.mean(dim=1) # Pooled embedding
except Exception as e:
st.error(f"Error processing code: {str(e)}")
return None
# Clone detection models
def rnn_similarity(emb1, emb2):
"""Calculate similarity using RNN model"""
if emb1 is None or emb2 is None:
return None
# Prepare input for RNN (sequence of embeddings)
combined = torch.cat([emb1.unsqueeze(0), emb2.unsqueeze(0)], dim=0)
with torch.no_grad():
similarity = rnn_model(combined.permute(1, 0, 2))
return torch.sigmoid(similarity).item()
def gnn_similarity(ast1, ast2):
"""Calculate similarity using GNN model"""
if ast1 is None or ast2 is None:
return None
data1 = ast_to_pyg_data(ast1)
data2 = ast_to_pyg_data(ast2)
if data1 is None or data2 is None:
return None
# Move data to device
data1 = data1.to(DEVICE)
data2 = data2.to(DEVICE)
with torch.no_grad():
sim1 = gnn_model(data1)
sim2 = gnn_model(data2)
return F.cosine_similarity(sim1, sim2).item()
def hybrid_similarity(code1, code2):
"""Combined similarity score using all models"""
# Get embeddings
emb1 = get_embedding(code1)
emb2 = get_embedding(code2)
# Parse ASTs
ast_tree1 = parse_ast(code1)
ast_tree2 = parse_ast(code2)
ast_graph1 = build_ast_graph(ast_tree1) if ast_tree1 else None
ast_graph2 = build_ast_graph(ast_tree2) if ast_tree2 else None
# Calculate individual similarities
codebert_sim = F.cosine_similarity(emb1, emb2).item() if emb1 is not None and emb2 is not None else 0
rnn_sim = rnn_similarity(emb1, emb2) if emb1 is not None and emb2 is not None else 0
gnn_sim = gnn_similarity(ast_graph1[0] if ast_graph1 else None,
ast_graph2[0] if ast_graph2 else None) or 0
# Combine with weights (can be tuned)
weights = {
'codebert': 0.4,
'rnn': 0.3,
'gnn': 0.3
}
combined = (weights['codebert'] * codebert_sim +
weights['rnn'] * rnn_sim +
weights['gnn'] * gnn_sim)
return {
'combined': combined,
'codebert': codebert_sim,
'rnn': rnn_sim,
'gnn': gnn_sim
}
# Comparison function
def compare_code(code1, code2):
if not code1 or not code2:
return None
with st.spinner('Analyzing code with multiple techniques...'):
# Get lexical features
lex1 = get_lexical_features(code1)
lex2 = get_lexical_features(code2)
# Get AST trees
ast_tree1 = parse_ast(code1)
ast_tree2 = parse_ast(code2)
# Get syntactic features
syn1 = get_syntactic_features(ast_tree1)
syn2 = get_syntactic_features(ast_tree2)
# Get semantic features
sem1 = get_semantic_features(code1)
sem2 = get_semantic_features(code2)
# Calculate hybrid similarity
similarities = hybrid_similarity(code1, code2)
return {
'similarities': similarities,
'lexical_features': (lex1, lex2),
'syntactic_features': (syn1, syn2),
'ast_trees': (ast_tree1, ast_tree2)
}
# UI Elements
st.title("π Advanced Java Code Clone Detector (IJaDataset 2.1)")
st.markdown("""
Detect all types of code clones (Type 1-4) using hybrid approach with:
- **CodeBERT** for semantic analysis
- **RNN** for sequence modeling
- **GNN** for AST structural analysis
""")
# Dataset selector
selected_pair = None
if dataset_pairs:
pair_options = {f"{i+1}: {pair['type']}": pair for i, pair in enumerate(dataset_pairs)}
selected_option = st.selectbox("Select a preloaded example pair:", list(pair_options.keys()))
selected_pair = pair_options[selected_option]
# Layout
col1, col2 = st.columns(2)
with col1:
code1 = st.text_area(
"First Java Code",
height=300,
value=selected_pair["code1"] if selected_pair else "",
help="Enter the first Java code snippet"
)
with col2:
code2 = st.text_area(
"Second Java Code",
height=300,
value=selected_pair["code2"] if selected_pair else "",
help="Enter the second Java code snippet"
)
# Threshold sliders
st.subheader("Detection Thresholds")
col1, col2, col3 = st.columns(3)
with col1:
threshold_type12 = st.slider(
"Type 1/2 Threshold",
min_value=0.5,
max_value=1.0,
value=0.9,
step=0.01,
help="Threshold for exact/syntactic clones"
)
with col2:
threshold_type3 = st.slider(
"Type 3 Threshold",
min_value=0.5,
max_value=1.0,
value=0.8,
step=0.01,
help="Threshold for near-miss clones"
)
with col3:
threshold_type4 = st.slider(
"Type 4 Threshold",
min_value=0.5,
max_value=1.0,
value=0.7,
step=0.01,
help="Threshold for semantic clones"
)
# Compare button
if st.button("Compare Code", type="primary"):
if tokenizer is None or code_model is None or rnn_model is None or gnn_model is None:
st.error("Models failed to load. Please check the logs.")
else:
result = compare_code(code1, code2)
if result is not None:
similarities = result['similarities']
lex1, lex2 = result['lexical_features']
syn1, syn2 = result['syntactic_features']
ast_tree1, ast_tree2 = result['ast_trees']
# Display results
st.subheader("Detection Results")
# Determine clone type
combined_sim = similarities['combined']
clone_type = "No Clone"
if combined_sim >= threshold_type12:
clone_type = "Type 1/2 Clone (Exact/Near-Exact)"
elif combined_sim >= threshold_type3:
clone_type = "Type 3 Clone (Near-Miss)"
elif combined_sim >= threshold_type4:
clone_type = "Type 4 Clone (Semantic)"
# Main metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Combined Similarity", f"{combined_sim:.3f}")
with col2:
st.metric("Detected Clone Type", clone_type)
with col3:
st.metric("CodeBERT Similarity", f"{similarities['codebert']:.3f}")
# Detailed metrics
with st.expander("Detailed Similarity Scores"):
cols = st.columns(3)
with cols[0]:
st.metric("RNN Similarity", f"{similarities['rnn']:.3f}")
with cols[1]:
st.metric("GNN Similarity", f"{similarities['gnn']:.3f}")
with cols[2]:
st.metric("Lexical Similarity",
f"{sum(lex1[k] == lex2[k] for k in lex1)/max(len(lex1),1):.2f}")
# Feature comparison
with st.expander("Feature Analysis"):
st.subheader("Lexical Features")
lex_df = pd.DataFrame([lex1, lex2], index=["Code 1", "Code 2"])
st.dataframe(lex_df)
st.subheader("Syntactic Features (AST Node Counts)")
syn_df = pd.DataFrame([syn1, syn2], index=["Code 1", "Code 2"]).fillna(0)
st.dataframe(syn_df)
# AST Visualization
if ast_tree1 and ast_tree2:
with st.expander("AST Visualization (First 20 nodes)"):
st.write("AST visualization would be implemented here with graphviz")
# In a real implementation, you would use graphviz to render the ASTs
# st.graphviz_chart(ast_to_graphviz(ast_tree1))
# st.graphviz_chart(ast_to_graphviz(ast_tree2))
# Normalized code view
with st.expander("Show normalized code"):
tab1, tab2 = st.tabs(["First Code", "Second Code"])
with tab1:
st.code(normalize_code(code1))
with tab2:
st.code(normalize_code(code2))
# Footer
st.markdown("---")
st.markdown("""
*Dataset Information*:
- Using IJaDataset 2.1 from Kaggle
- Contains 100K Java files with clone annotations
- Clone types: Type-1, Type-2, Type-3, and Type-4 clones
*Model Architecture*:
- **CodeBERT**: Pre-trained model for semantic analysis
- **RNN**: Processes token sequences for sequential patterns
- **GNN**: Analyzes AST structure for syntactic patterns
- **Hybrid Approach**: Combines all techniques for comprehensive detection
""") |