Spaces:
Runtime error
Runtime error
File size: 7,785 Bytes
84d4d13 c4ca5b1 daf072c c4ca5b1 84d4d13 c4ca5b1 daf072c c4ca5b1 daf072c 84d4d13 daf072c 84d4d13 daf072c c4ca5b1 daf072c 84d4d13 c4ca5b1 84d4d13 daf072c 84d4d13 daf072c 84d4d13 daf072c c4ca5b1 84d4d13 daf072c c4ca5b1 daf072c c4ca5b1 84d4d13 c4ca5b1 daf072c c4ca5b1 daf072c c4ca5b1 daf072c 84d4d13 c4ca5b1 daf072c c4ca5b1 daf072c c4ca5b1 daf072c c4ca5b1 84d4d13 c4ca5b1 84d4d13 c4ca5b1 84d4d13 c4ca5b1 84d4d13 c4ca5b1 84d4d13 c4ca5b1 daf072c 84d4d13 daf072c c4ca5b1 84d4d13 c4ca5b1 daf072c c4ca5b1 84d4d13 daf072c c4ca5b1 84d4d13 daf072c c4ca5b1 daf072c c4ca5b1 daf072c c4ca5b1 daf072c 84d4d13 daf072c c4ca5b1 daf072c 84d4d13 daf072c 84d4d13 daf072c 84d4d13 daf072c 84d4d13 daf072c 84d4d13 daf072c 84d4d13 c4ca5b1 84d4d13 daf072c 84d4d13 daf072c 84d4d13 daf072c c4ca5b1 84d4d13 daf072c 84d4d13 daf072c c4ca5b1 daf072c 84d4d13 daf072c 84d4d13 c4ca5b1 84d4d13 daf072c 84d4d13 c4ca5b1 84d4d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import streamlit as st
import javalang
import torch
import torch.nn as nn
import torch.nn.functional as F
import re
import numpy as np
import networkx as nx
from transformers import AutoTokenizer, AutoModel
import warnings
import pandas as pd
from collections import defaultdict
# Configuration
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")
# Constants
MODEL_NAME = "microsoft/codebert-base"
MAX_LENGTH = 512
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Set up page config
st.set_page_config(
page_title="Java Code Clone Detector",
page_icon="π",
layout="wide"
)
# Simplified RNN Model (for Hugging Face compatibility)
class SimpleRNN(nn.Module):
def __init__(self, input_size=768, hidden_size=128):
super().__init__()
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
out, _ = self.rnn(x)
return torch.sigmoid(self.fc(out[:, -1]))
# Model Loading with caching
@st.cache_resource(show_spinner=False)
def load_models():
try:
with st.spinner('Loading models (first run may take a few minutes)...'):
# Load CodeBERT
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
code_model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE)
# Initialize simple RNN
rnn_model = SimpleRNN().to(DEVICE)
return tokenizer, code_model, rnn_model
except Exception as e:
st.error(f"Model loading failed: {str(e)}")
return None, None, None
# AST Processing (simplified for Hugging Face)
def parse_ast(code):
try:
return javalang.parse.parse(code)
except:
return None
def build_simple_ast_features(ast_tree):
if not ast_tree: return {}
features = defaultdict(int)
def traverse(node):
features[type(node).__name__] += 1
for child in getattr(node, 'children', []):
if isinstance(child, javalang.ast.Node):
traverse(child)
elif isinstance(child, (list, tuple)):
for item in child:
if isinstance(item, javalang.ast.Node):
traverse(item)
traverse(ast_tree)
return dict(features)
# Feature Extraction
def normalize_code(code):
code = re.sub(r'//.*?$', '', code, flags=re.MULTILINE)
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
return re.sub(r'\s+', ' ', code).strip()
def get_embedding(code, tokenizer, model):
try:
inputs = tokenizer(
normalize_code(code),
return_tensors="pt",
truncation=True,
max_length=MAX_LENGTH,
padding='max_length'
).to(DEVICE)
with torch.no_grad():
return model(**inputs).last_hidden_state.mean(dim=1)
except:
return None
# Similarity Calculations (optimized for Hugging Face)
def calculate_similarities(code1, code2, models):
tokenizer, code_model, rnn_model = models
# Get embeddings
emb1 = get_embedding(code1, tokenizer, code_model)
emb2 = get_embedding(code2, tokenizer, code_model)
# Get AST features
ast1 = parse_ast(code1)
ast2 = parse_ast(code2)
ast_features1 = build_simple_ast_features(ast1)
ast_features2 = build_simple_ast_features(ast2)
# Calculate similarities
codebert_sim = 0
if emb1 is not None and emb2 is not None:
codebert_sim = F.cosine_similarity(emb1, emb2).item()
rnn_sim = 0
if emb1 is not None and emb2 is not None:
with torch.no_grad():
rnn_input = torch.cat([emb1, emb2]).unsqueeze(0)
rnn_sim = rnn_model(rnn_input).item()
# Simple AST similarity (count matching node types)
ast_sim = 0
if ast_features1 and ast_features2:
common_keys = set(ast_features1.keys()) & set(ast_features2.keys())
total_keys = set(ast_features1.keys()) | set(ast_features2.keys())
ast_sim = len(common_keys) / len(total_keys) if total_keys else 0
return {
'codebert': codebert_sim,
'rnn': rnn_sim,
'ast': ast_sim,
'combined': 0.5*codebert_sim + 0.3*rnn_sim + 0.2*ast_sim
}
# Main UI
def main():
st.title("π Java Code Clone Detector (IJaDataset 2.1)")
st.markdown("Detect Type 1-4 clones using hybrid analysis")
# Load models
models = load_models()
if None in models:
st.error("Failed to load required models. Please check the logs.")
return
# Example code pairs
example_pairs = {
"Type 1 Example": {
"code1": "public class Test { public static void main(String[] args) { System.out.println(\"Hello\"); } }",
"code2": "public class Test { public static void main(String[] args) { System.out.println(\"Hello\"); } }"
},
"Type 2 Example": {
"code1": "public class Test { public static void main(String[] args) { System.out.println(\"Hello\"); } }",
"code2": "public class Example { public static void main(String[] args) { System.out.println(\"Hello\"); } }"
},
"Type 3 Example": {
"code1": "public class Test { public static void main(String[] args) { for(int i=0;i<10;i++) System.out.println(i); } }",
"code2": "public class Example { public static void run(String[] params) { for(int j=0;j<10;j++) System.out.println(j); } }"
}
}
# Code input
selected_example = st.selectbox("Select example pair:", list(example_pairs.keys()))
col1, col2 = st.columns(2)
with col1:
code1 = st.text_area(
"Code 1",
height=300,
value=example_pairs[selected_example]["code1"]
)
with col2:
code2 = st.text_area(
"Code 2",
height=300,
value=example_pairs[selected_example]["code2"]
)
# Thresholds
st.subheader("Detection Thresholds")
cols = st.columns(3)
with cols[0]:
t1 = st.slider("Type 1/2", 0.85, 1.0, 0.95)
with cols[1]:
t3 = st.slider("Type 3", 0.7, 0.9, 0.8)
with cols[2]:
t4 = st.slider("Type 4", 0.5, 0.8, 0.65)
# Analysis button
if st.button("Analyze Code", type="primary"):
with st.spinner("Analyzing code..."):
sims = calculate_similarities(code1, code2, models)
# Determine clone type
clone_type = "No Clone"
if sims['combined'] >= t1:
clone_type = "Type 1/2 Clone (Exact/Near-Exact)"
elif sims['combined'] >= t3:
clone_type = "Type 3 Clone (Near-Miss)"
elif sims['combined'] >= t4:
clone_type = "Type 4 Clone (Semantic)"
# Display results
st.subheader("Results")
# Metrics
cols = st.columns(4)
cols[0].metric("Combined", f"{sims['combined']:.2f}")
cols[1].metric("CodeBERT", f"{sims['codebert']:.2f}")
cols[2].metric("RNN", f"{sims['rnn']:.2f}")
cols[3].metric("AST", f"{sims['ast']:.2f}")
# Progress bar
st.progress(sims['combined'])
# Final result
st.metric("Detection Result", clone_type)
# Show details
with st.expander("Advanced Details"):
st.json(sims)
st.code(f"Normalized Code 1:\n{normalize_code(code1)}")
st.code(f"Normalized Code 2:\n{normalize_code(code2)}")
if __name__ == "__main__":
main() |