File size: 9,570 Bytes
84d4d13
c4ca5b1
 
 
 
 
 
 
 
84d4d13
c4ca5b1
 
 
 
 
 
 
84d4d13
 
 
 
 
 
 
 
 
 
 
c4ca5b1
 
84d4d13
c4ca5b1
 
 
 
84d4d13
 
 
 
 
 
 
 
 
 
 
 
 
c4ca5b1
84d4d13
 
 
 
 
 
 
 
 
 
 
 
 
c4ca5b1
84d4d13
 
c4ca5b1
 
84d4d13
 
 
 
 
 
 
 
 
c4ca5b1
84d4d13
c4ca5b1
 
84d4d13
c4ca5b1
 
 
 
 
 
 
 
84d4d13
c4ca5b1
 
 
 
 
84d4d13
 
 
c4ca5b1
 
84d4d13
 
c4ca5b1
84d4d13
c4ca5b1
84d4d13
c4ca5b1
84d4d13
c4ca5b1
 
84d4d13
c4ca5b1
 
84d4d13
 
c4ca5b1
 
 
84d4d13
c4ca5b1
 
 
 
84d4d13
c4ca5b1
84d4d13
 
 
 
c4ca5b1
 
84d4d13
c4ca5b1
84d4d13
c4ca5b1
 
 
84d4d13
c4ca5b1
 
84d4d13
c4ca5b1
 
84d4d13
c4ca5b1
84d4d13
 
 
c4ca5b1
84d4d13
 
 
 
 
c4ca5b1
84d4d13
c4ca5b1
84d4d13
c4ca5b1
84d4d13
 
 
c4ca5b1
84d4d13
c4ca5b1
 
84d4d13
c4ca5b1
 
 
 
 
 
 
84d4d13
 
c4ca5b1
 
84d4d13
 
 
c4ca5b1
 
84d4d13
 
c4ca5b1
 
84d4d13
 
c4ca5b1
84d4d13
c4ca5b1
 
84d4d13
 
 
 
 
c4ca5b1
84d4d13
 
 
 
 
 
 
 
 
 
c4ca5b1
 
 
 
84d4d13
 
c4ca5b1
 
84d4d13
 
 
 
c4ca5b1
84d4d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4ca5b1
 
 
84d4d13
 
 
 
 
 
c4ca5b1
84d4d13
 
 
 
 
 
 
c4ca5b1
84d4d13
 
c4ca5b1
84d4d13
 
 
 
 
c4ca5b1
84d4d13
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import streamlit as st
import javalang
import torch
import torch.nn as nn
import torch.nn.functional as F
import re
import numpy as np
import networkx as nx
from transformers import AutoTokenizer, AutoModel, AutoConfig
from torch_geometric.data import Data
from torch_geometric.nn import GCNConv
import warnings
import pandas as pd
import zipfile
from collections import defaultdict

# Configuration
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")

# Constants
MODEL_NAME = "microsoft/codebert-base"
MAX_LENGTH = 512
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DATASET_PATH = "ijadataset2-1.zip"
CACHE_DIR = "./model_cache"

# Set up page config
st.set_page_config(
    page_title="Advanced Java Code Clone Detector",
    page_icon="πŸ”",
    layout="wide"
)

# Model Definitions
class RNNModel(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, 1)
        
    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(DEVICE)
        out, _ = self.rnn(x, h0)
        return self.fc(out[:, -1, :])

class GNNModel(nn.Module):
    def __init__(self, node_features):
        super().__init__()
        self.conv1 = GCNConv(node_features, 128)
        self.conv2 = GCNConv(128, 64)
        self.fc = nn.Linear(64, 1)
        
    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = F.relu(self.conv1(x, edge_index))
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index)
        return torch.sigmoid(self.fc(x).mean())

# Model Loading with Cache
@st.cache_resource(show_spinner=False)
def load_models():
    try:
        with st.spinner('Loading models (first run may take a few minutes)...'):
            config = AutoConfig.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
            tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
            model = AutoModel.from_pretrained(MODEL_NAME, config=config, cache_dir=CACHE_DIR).to(DEVICE)
            
            rnn_model = RNNModel(input_size=768, hidden_size=256, num_layers=2).to(DEVICE)
            gnn_model = GNNModel(node_features=128).to(DEVICE)
            
            return tokenizer, model, rnn_model, gnn_model
    except Exception as e:
        st.error(f"Model loading failed: {str(e)}")
        return None, None, None, None

# Dataset Loading
@st.cache_resource
def load_dataset():
    try:
        if not os.path.exists("Diverse_100K_Dataset"):
            with zipfile.ZipFile(DATASET_PATH, 'r') as zip_ref:
                zip_ref.extractall(".")
        
        clone_pairs = []
        base_path = "Diverse_100K_Dataset/Subject_CloneTypes_Directories"
        
        for clone_type in ["Clone_Type1", "Clone_Type2", "Clone_Type3 - ST", "Clone_Type4"]:
            type_path = os.path.join(base_path, clone_type)
            if os.path.exists(type_path):
                for root, _, files in os.walk(type_path):
                    if files and len(files) >= 2:
                        with open(os.path.join(root, files[0]), 'r', encoding='utf-8') as f1, \
                             open(os.path.join(root, files[1]), 'r', encoding='utf-8') as f2:
                            clone_pairs.append({
                                "type": clone_type,
                                "code1": f1.read(),
                                "code2": f2.read()
                            })
                        break
        
        return clone_pairs[:10]
    except Exception as e:
        st.error(f"Dataset error: {str(e)}")
        return []

# AST Processing
def parse_ast(code):
    try:
        return javalang.parse.parse(code)
    except:
        return None

def build_ast_graph(ast_tree):
    if not ast_tree: return None
    
    G = nx.DiGraph()
    node_id = 0
    
    def traverse(node, parent=None):
        nonlocal node_id
        current = node_id
        G.add_node(current, type=type(node).__name__)
        if parent is not None:
            G.add_edge(parent, current)
        node_id += 1
        
        for child in getattr(node, 'children', []):
            if isinstance(child, javalang.ast.Node):
                traverse(child, current)
            elif isinstance(child, (list, tuple)):
                for item in child:
                    if isinstance(item, javalang.ast.Node):
                        traverse(item, current)
    
    traverse(ast_tree)
    return G

def ast_to_pyg_data(ast_graph):
    if not ast_graph: return None
    
    node_types = list(nx.get_node_attributes(ast_graph, 'type').values())
    unique_types = list(set(node_types))
    type_to_idx = {t: i for i, t in enumerate(unique_types)}
    
    x = torch.zeros(len(node_types), len(unique_types))
    for i, t in enumerate(node_types):
        x[i, type_to_idx[t]] = 1
        
    edge_index = torch.tensor(list(ast_graph.edges())).t().contiguous()
    
    return Data(x=x.to(DEVICE), edge_index=edge_index.to(DEVICE))

# Feature Extraction
def normalize_code(code):
    code = re.sub(r'//.*?$', '', code, flags=re.MULTILINE)
    code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
    return re.sub(r'\s+', ' ', code).strip()

def get_embedding(code, tokenizer, model):
    try:
        inputs = tokenizer(
            normalize_code(code),
            return_tensors="pt",
            truncation=True,
            max_length=MAX_LENGTH,
            padding='max_length'
        ).to(DEVICE)
        
        with torch.no_grad():
            return model(**inputs).last_hidden_state.mean(dim=1)
    except:
        return None

# Similarity Calculations
def calculate_similarities(code1, code2, models):
    tokenizer, code_model, rnn_model, gnn_model = models
    
    # Get embeddings
    emb1 = get_embedding(code1, tokenizer, code_model)
    emb2 = get_embedding(code2, tokenizer, code_model)
    
    # Parse ASTs
    ast1 = build_ast_graph(parse_ast(code1))
    ast2 = build_ast_graph(parse_ast(code2))
    
    # Calculate similarities
    codebert_sim = F.cosine_similarity(emb1, emb2).item() if emb1 is not None and emb2 is not None else 0
    
    rnn_sim = 0
    if emb1 is not None and emb2 is not None:
        with torch.no_grad():
            rnn_input = torch.stack([emb1.squeeze(), emb2.squeeze()])
            rnn_sim = torch.sigmoid(rnn_model(rnn_input.unsqueeze(0))).item()
    
    gnn_sim = 0
    if ast1 and ast2:
        data1 = ast_to_pyg_data(ast1)
        data2 = ast_to_pyg_data(ast2)
        if data1 and data2:
            with torch.no_grad():
                gnn_sim = F.cosine_similarity(
                    gnn_model(data1).unsqueeze(0),
                    gnn_model(data2).unsqueeze(0)
                ).item()
    
    return {
        'codebert': codebert_sim,
        'rnn': rnn_sim,
        'gnn': gnn_sim,
        'combined': 0.4*codebert_sim + 0.3*rnn_sim + 0.3*gnn_sim
    }

# UI Components
def main():
    st.title("πŸ” Advanced Java Code Clone Detector")
    st.markdown("Detect all clone types (1-4) using hybrid analysis")
    
    # Load resources
    models = load_models()
    dataset_pairs = load_dataset()
    
    # Code input
    selected_pair = None
    if dataset_pairs:
        pair_options = {f"{i+1}: {pair['type']}": pair for i, pair in enumerate(dataset_pairs)}
        selected_option = st.selectbox("Select example pair:", list(pair_options.keys()))
        selected_pair = pair_options[selected_option]
    
    col1, col2 = st.columns(2)
    with col1:
        code1 = st.text_area("Code 1", height=300, value=selected_pair["code1"] if selected_pair else "")
    with col2:
        code2 = st.text_area("Code 2", height=300, value=selected_pair["code2"] if selected_pair else "")
    
    # Thresholds
    st.subheader("Detection Thresholds")
    cols = st.columns(3)
    with cols[0]:
        t1 = st.slider("Type 1/2", 0.85, 1.0, 0.95)
    with cols[1]:
        t3 = st.slider("Type 3", 0.7, 0.9, 0.8)
    with cols[2]:
        t4 = st.slider("Type 4", 0.5, 0.8, 0.65)
    
    # Analysis
    if st.button("Analyze", type="primary") and models[0]:
        with st.spinner("Analyzing..."):
            sims = calculate_similarities(code1, code2, models)
            
            # Determine clone type
            clone_type = "No Clone"
            if sims['combined'] >= t1:
                clone_type = "Type 1/2 Clone"
            elif sims['combined'] >= t3:
                clone_type = "Type 3 Clone"
            elif sims['combined'] >= t4:
                clone_type = "Type 4 Clone"
            
            # Display results
            st.subheader("Results")
            cols = st.columns(4)
            cols[0].metric("Combined", f"{sims['combined']:.2f}")
            cols[1].metric("CodeBERT", f"{sims['codebert']:.2f}")
            cols[2].metric("RNN", f"{sims['rnn']:.2f}")
            cols[3].metric("GNN", f"{sims['gnn']:.2f}")
            
            st.progress(sims['combined'])
            st.metric("Detection Result", clone_type)
            
            # Show details
            with st.expander("Details"):
                st.json(sims)
                st.code(f"Normalized Code 1:\n{normalize_code(code1)}")
                st.code(f"Normalized Code 2:\n{normalize_code(code2)}")

if __name__ == "__main__":
    main()