Spaces:
Runtime error
Runtime error
File size: 8,921 Bytes
84d4d13 c031615 c4ca5b1 c031615 c4ca5b1 c031615 c4ca5b1 c031615 c4ca5b1 c031615 c4ca5b1 c031615 84d4d13 c031615 c4ca5b1 c031615 c4ca5b1 c031615 c4ca5b1 c031615 c4ca5b1 c031615 84d4d13 c031615 c4ca5b1 c031615 daf072c c031615 c4ca5b1 84d4d13 c031615 1c3d984 c031615 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import re
import time
import random
import zipfile
import javalang
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric
from torch_geometric.data import Data, Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_recall_fscore_support
from tqdm import tqdm
import networkx as nx
# ---- Utility functions ----
def unzip_dataset(zip_path, extract_to):
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_to)
def normalize_java_code(code):
# Remove single-line comments
code = re.sub(r'//.*?\n', '', code)
# Remove multi-line comments
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
# Remove extra spaces and blank lines
code = re.sub(r'\s+', ' ', code)
return code.strip()
def safe_parse_java(code):
try:
tokens = list(javalang.tokenizer.tokenize(code))
parser = javalang.parser.Parser(tokens)
tree = parser.parse()
return tree
except Exception:
return None
def ast_to_graph(ast):
graph = nx.DiGraph()
def dfs(node, parent_id=None):
node_id = len(graph)
graph.add_node(node_id, label=type(node).__name__)
if parent_id is not None:
graph.add_edge(parent_id, node_id)
for child in getattr(node, 'children', []):
if isinstance(child, (list, tuple)):
for item in child:
if isinstance(item, javalang.ast.Node):
dfs(item, node_id)
elif isinstance(child, javalang.ast.Node):
dfs(child, node_id)
dfs(ast)
return graph
def tokenize_java_code(code):
try:
tokens = list(javalang.tokenizer.tokenize(code))
token_list = [token.value for token in tokens]
return token_list
except:
return []
# ---- Data Preprocessing ----
class CloneDataset(Dataset):
def __init__(self, root_dir, transform=None):
super().__init__()
self.data_list = []
self.labels = []
self.skipped_files = 0
self.max_tokens = 5000
clone_dirs = {
"Clone_Type1": 1,
"Clone_Type2": 1,
"Clone_Type3 - ST": 1,
"Clone_Type3 - VST": 1,
"Clone_Type3 - MT": 0 # Assuming MT = Not Clone
}
for clone_type, label in clone_dirs.items():
clone_path = os.path.join(root_dir, 'Subject_CloneTypes_Directories', clone_type)
for root, _, files in os.walk(clone_path):
for file in files:
if file.endswith(".java"):
file_path = os.path.join(root, file)
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
code = f.read()
code = normalize_java_code(code)
if len(code.split()) > self.max_tokens:
self.skipped_files += 1
continue
ast = safe_parse_java(code)
if ast is None:
self.skipped_files += 1
continue
graph = ast_to_graph(ast)
tokens = tokenize_java_code(code)
if not tokens:
self.skipped_files += 1
continue
data = {
'graph': graph,
'tokens': tokens,
'label': label
}
self.data_list.append(data)
def len(self):
return len(self.data_list)
def get(self, idx):
data_item = self.data_list[idx]
graph = data_item['graph']
tokens = data_item['tokens']
label = data_item['label']
# Graph processing
edge_index = torch.tensor(list(graph.edges)).t().contiguous()
node_features = torch.arange(graph.number_of_nodes()).unsqueeze(1).float()
# Token processing
token_indices = torch.tensor([hash(t) % 5000 for t in tokens], dtype=torch.long)
return edge_index, node_features, token_indices, torch.tensor(label, dtype=torch.long)
# ---- Models ----
class GNNEncoder(nn.Module):
def __init__(self, in_channels=1, hidden_dim=64):
super().__init__()
self.conv1 = torch_geometric.nn.GCNConv(in_channels, hidden_dim)
self.conv2 = torch_geometric.nn.GCNConv(hidden_dim, hidden_dim)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index)
x = F.relu(x)
x = self.conv2(x, edge_index)
x = F.relu(x)
return torch.mean(x, dim=0) # Graph-level embedding
class RNNEncoder(nn.Module):
def __init__(self, vocab_size=5000, embedding_dim=64, hidden_dim=64):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
def forward(self, tokens):
embeds = self.embedding(tokens)
_, (hidden, _) = self.lstm(embeds)
return hidden.squeeze(0)
class HybridClassifier(nn.Module):
def __init__(self):
super().__init__()
self.gnn = GNNEncoder()
self.rnn = RNNEncoder()
self.fc = nn.Linear(128, 2)
def forward(self, edge_index, node_features, tokens):
gnn_out = self.gnn(node_features, edge_index)
rnn_out = self.rnn(tokens)
combined = torch.cat([gnn_out, rnn_out], dim=-1)
out = self.fc(combined)
return out
# ---- Training and Evaluation ----
def train(model, optimizer, loader, device):
model.train()
total_loss = 0
for edge_index, node_features, tokens, labels in loader:
edge_index = edge_index.to(device)
node_features = node_features.to(device)
tokens = tokens.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(edge_index, node_features, tokens)
loss = F.cross_entropy(outputs.unsqueeze(0), labels.unsqueeze(0))
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(loader)
def evaluate(model, loader, device):
model.eval()
preds, labels_all = [], []
with torch.no_grad():
for edge_index, node_features, tokens, labels in loader:
edge_index = edge_index.to(device)
node_features = node_features.to(device)
tokens = tokens.to(device)
labels = labels.to(device)
outputs = model(edge_index, node_features, tokens)
pred = outputs.argmax(dim=-1)
preds.append(pred.cpu().numpy())
labels_all.append(labels.cpu().numpy())
preds = np.concatenate(preds)
labels_all = np.concatenate(labels_all)
precision, recall, f1, _ = precision_recall_fscore_support(labels_all, preds, average='binary')
return precision, recall, f1
# ---- Main Execution ----
if __name__ == "__main__":
import numpy as np
dataset_root = 'archive (1)'
unzip_dataset('archive (1).zip', dataset_root)
dataset = CloneDataset(dataset_root)
print(f"Total valid samples: {dataset.len()}")
print(f"Total skipped files: {dataset.skipped_files}")
indices = list(range(dataset.len()))
train_idx, temp_idx = train_test_split(indices, test_size=0.2, random_state=42)
val_idx, test_idx = train_test_split(temp_idx, test_size=0.5, random_state=42)
train_set = torch.utils.data.Subset(dataset, train_idx)
val_set = torch.utils.data.Subset(dataset, val_idx)
test_set = torch.utils.data.Subset(dataset, test_idx)
batch_size = 1 # small because of variable graph sizes
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_set, batch_size=batch_size)
test_loader = DataLoader(test_set, batch_size=batch_size)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = HybridClassifier().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
epochs = 5
start_time = time.time()
for epoch in range(epochs):
train_loss = train(model, optimizer, train_loader, device)
precision, recall, f1 = evaluate(model, val_loader, device)
print(f"Epoch {epoch+1}: Loss={train_loss:.4f}, Precision={precision:.4f}, Recall={recall:.4f}, F1={f1:.4f}")
precision, recall, f1 = evaluate(model, test_loader, device)
total_time = time.time() - start_time
print(f"Test Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}")
print(f"Total execution time: {total_time:.2f} seconds")
|