import torch import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch.nn.functional as F import spacy from typing import List, Dict, Tuple import logging import os import gradio as gr from fastapi.middleware.cors import CORSMiddleware from concurrent.futures import ThreadPoolExecutor from functools import partial import time from datetime import datetime import openpyxl from openpyxl import Workbook from openpyxl.utils import get_column_letter from io import BytesIO import base64 import hashlib # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Constants MAX_LENGTH = 512 MODEL_NAME = "microsoft/deberta-v3-small" WINDOW_SIZE = 6 WINDOW_OVERLAP = 2 CONFIDENCE_THRESHOLD = 0.65 BATCH_SIZE = 8 # Reduced batch size for CPU MAX_WORKERS = 4 # Number of worker threads for processing # Get password hash from environment variable (more secure) ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH') if not ADMIN_PASSWORD_HASH: ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb" # Excel file path for logs EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx" def is_admin_password(input_text: str) -> bool: """ Check if the input text matches the admin password using secure hash comparison. This prevents the password from being visible in the source code. """ # Hash the input text input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest() # Compare hashes (constant-time comparison to prevent timing attacks) return input_hash == ADMIN_PASSWORD_HASH class TextWindowProcessor: def __init__(self): try: self.nlp = spacy.load("en_core_web_sm") except OSError: logger.info("Downloading spacy model...") spacy.cli.download("en_core_web_sm") self.nlp = spacy.load("en_core_web_sm") if 'sentencizer' not in self.nlp.pipe_names: self.nlp.add_pipe('sentencizer') disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer'] self.nlp.disable_pipes(*disabled_pipes) # Initialize thread pool for parallel processing self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS) def split_into_sentences(self, text: str) -> List[str]: doc = self.nlp(text) return [str(sent).strip() for sent in doc.sents] def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]: if len(sentences) < window_size: return [" ".join(sentences)] windows = [] stride = window_size - overlap for i in range(0, len(sentences) - window_size + 1, stride): window = sentences[i:i + window_size] windows.append(" ".join(window)) return windows def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]: """Create windows with better boundary handling""" windows = [] window_sentence_indices = [] for i in range(len(sentences)): # Calculate window boundaries centered on current sentence half_window = window_size // 2 start_idx = max(0, i - half_window) end_idx = min(len(sentences), i + half_window + 1) # Create the window window = sentences[start_idx:end_idx] windows.append(" ".join(window)) window_sentence_indices.append(list(range(start_idx, end_idx))) return windows, window_sentence_indices class TextClassifier: def __init__(self): # Set thread configuration before any model loading or parallel work if not torch.cuda.is_available(): torch.set_num_threads(MAX_WORKERS) torch.set_num_interop_threads(MAX_WORKERS) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model_name = MODEL_NAME self.tokenizer = None self.model = None self.processor = TextWindowProcessor() self.initialize_model() def initialize_model(self): """Initialize the model and tokenizer.""" logger.info("Initializing model and tokenizer...") from transformers import DebertaV2TokenizerFast self.tokenizer = DebertaV2TokenizerFast.from_pretrained( self.model_name, model_max_length=MAX_LENGTH, use_fast=True ) self.model = AutoModelForSequenceClassification.from_pretrained( self.model_name, num_labels=2 ).to(self.device) model_path = "model_20250209_184929_acc1.0000.pt" if os.path.exists(model_path): logger.info(f"Loading custom model from {model_path}") checkpoint = torch.load(model_path, map_location=self.device) self.model.load_state_dict(checkpoint['model_state_dict']) else: logger.warning("Custom model file not found. Using base model.") self.model.eval() def quick_scan(self, text: str) -> Dict: """Perform a quick scan using simple window analysis.""" if not text.strip(): return { 'prediction': 'unknown', 'confidence': 0.0, 'num_windows': 0 } sentences = self.processor.split_into_sentences(text) windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP) predictions = [] # Process windows in smaller batches for CPU efficiency for i in range(0, len(windows), BATCH_SIZE): batch_windows = windows[i:i + BATCH_SIZE] inputs = self.tokenizer( batch_windows, truncation=True, padding=True, max_length=MAX_LENGTH, return_tensors="pt" ).to(self.device) with torch.no_grad(): outputs = self.model(**inputs) probs = F.softmax(outputs.logits, dim=-1) for idx, window in enumerate(batch_windows): prediction = { 'window': window, 'human_prob': probs[idx][1].item(), 'ai_prob': probs[idx][0].item(), 'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai' } predictions.append(prediction) # Clean up GPU memory if available del inputs, outputs, probs if torch.cuda.is_available(): torch.cuda.empty_cache() if not predictions: return { 'prediction': 'unknown', 'confidence': 0.0, 'num_windows': 0 } avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions) avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions) return { 'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai', 'confidence': max(avg_human_prob, avg_ai_prob), 'num_windows': len(predictions) } def detailed_scan(self, text: str) -> Dict: """Perform a detailed scan with improved sentence-level analysis.""" # Clean up trailing whitespace text = text.rstrip() if not text.strip(): return { 'sentence_predictions': [], 'highlighted_text': '', 'full_text': '', 'overall_prediction': { 'prediction': 'unknown', 'confidence': 0.0, 'num_sentences': 0 } } sentences = self.processor.split_into_sentences(text) if not sentences: return {} # Create centered windows for each sentence windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE) # Track scores for each sentence sentence_appearances = {i: 0 for i in range(len(sentences))} sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))} # Process windows in batches for i in range(0, len(windows), BATCH_SIZE): batch_windows = windows[i:i + BATCH_SIZE] batch_indices = window_sentence_indices[i:i + BATCH_SIZE] inputs = self.tokenizer( batch_windows, truncation=True, padding=True, max_length=MAX_LENGTH, return_tensors="pt" ).to(self.device) with torch.no_grad(): outputs = self.model(**inputs) probs = F.softmax(outputs.logits, dim=-1) # Attribute predictions with weighted scoring for window_idx, indices in enumerate(batch_indices): center_idx = len(indices) // 2 center_weight = 0.7 # Higher weight for center sentence edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight for pos, sent_idx in enumerate(indices): # Apply higher weight to center sentence weight = center_weight if pos == center_idx else edge_weight sentence_appearances[sent_idx] += weight sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item() sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item() # Clean up memory del inputs, outputs, probs if torch.cuda.is_available(): torch.cuda.empty_cache() # Calculate final predictions with boundary smoothing sentence_predictions = [] for i in range(len(sentences)): if sentence_appearances[i] > 0: human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i] ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i] # Apply minimal smoothing at prediction boundaries if i > 0 and i < len(sentences) - 1: prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1] prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1] next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1] next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1] # Check if we're at a prediction boundary current_pred = 'human' if human_prob > ai_prob else 'ai' prev_pred = 'human' if prev_human > prev_ai else 'ai' next_pred = 'human' if next_human > next_ai else 'ai' if current_pred != prev_pred or current_pred != next_pred: # Small adjustment at boundaries smooth_factor = 0.1 human_prob = (human_prob * (1 - smooth_factor) + (prev_human + next_human) * smooth_factor / 2) ai_prob = (ai_prob * (1 - smooth_factor) + (prev_ai + next_ai) * smooth_factor / 2) sentence_predictions.append({ 'sentence': sentences[i], 'human_prob': human_prob, 'ai_prob': ai_prob, 'prediction': 'human' if human_prob > ai_prob else 'ai', 'confidence': max(human_prob, ai_prob) }) return { 'sentence_predictions': sentence_predictions, 'highlighted_text': self.format_predictions_html(sentence_predictions), 'full_text': text, 'overall_prediction': self.aggregate_predictions(sentence_predictions) } def format_predictions_html(self, sentence_predictions: List[Dict]) -> str: """Format predictions as HTML with color-coding.""" html_parts = [] for pred in sentence_predictions: sentence = pred['sentence'] confidence = pred['confidence'] if confidence >= CONFIDENCE_THRESHOLD: if pred['prediction'] == 'human': color = "#90EE90" # Light green else: color = "#FFB6C6" # Light red else: if pred['prediction'] == 'human': color = "#E8F5E9" # Very light green else: color = "#FFEBEE" # Very light red html_parts.append(f'{sentence}') return " ".join(html_parts) def aggregate_predictions(self, predictions: List[Dict]) -> Dict: """Aggregate predictions from multiple sentences into a single prediction.""" if not predictions: return { 'prediction': 'unknown', 'confidence': 0.0, 'num_sentences': 0 } total_human_prob = sum(p['human_prob'] for p in predictions) total_ai_prob = sum(p['ai_prob'] for p in predictions) num_sentences = len(predictions) avg_human_prob = total_human_prob / num_sentences avg_ai_prob = total_ai_prob / num_sentences return { 'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai', 'confidence': max(avg_human_prob, avg_ai_prob), 'num_sentences': num_sentences } def initialize_excel_log(): """Initialize the Excel log file if it doesn't exist.""" if not os.path.exists(EXCEL_LOG_PATH): wb = Workbook() ws = wb.active ws.title = "Prediction Logs" # Set column headers headers = ["timestamp", "word_count", "prediction", "confidence", "execution_time_ms", "analysis_mode", "full_text"] for col_num, header in enumerate(headers, 1): ws.cell(row=1, column=col_num, value=header) # Adjust column widths for better readability ws.column_dimensions[get_column_letter(1)].width = 20 # timestamp ws.column_dimensions[get_column_letter(2)].width = 10 # word_count ws.column_dimensions[get_column_letter(3)].width = 10 # prediction ws.column_dimensions[get_column_letter(4)].width = 10 # confidence ws.column_dimensions[get_column_letter(5)].width = 15 # execution_time_ms ws.column_dimensions[get_column_letter(6)].width = 15 # analysis_mode ws.column_dimensions[get_column_letter(7)].width = 100 # full_text # Save the workbook wb.save(EXCEL_LOG_PATH) logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}") def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode): """Log prediction data to an Excel file in the /tmp directory.""" # Initialize the Excel file if it doesn't exist if not os.path.exists(EXCEL_LOG_PATH): initialize_excel_log() try: # Load the existing workbook wb = openpyxl.load_workbook(EXCEL_LOG_PATH) ws = wb.active # Get the next row number next_row = ws.max_row + 1 # Clean up the input text for Excel storage (replace problematic characters) cleaned_text = input_text.replace("\n", " ") # Prepare row data timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") row_data = [ timestamp, word_count, prediction, f"{confidence:.2f}", f"{execution_time:.2f}", mode, cleaned_text ] # Add the data to the worksheet for col_num, value in enumerate(row_data, 1): ws.cell(row=next_row, column=col_num, value=value) # Save the workbook wb.save(EXCEL_LOG_PATH) logger.info(f"Successfully logged prediction data to {EXCEL_LOG_PATH}") return True except Exception as e: logger.error(f"Error logging prediction data to Excel: {str(e)}") return False def get_logs_as_base64(): """Read the Excel logs file and return as base64 for downloading.""" if not os.path.exists(EXCEL_LOG_PATH): return None try: # Read the Excel file into memory with open(EXCEL_LOG_PATH, "rb") as f: file_data = f.read() # Encode the file as base64 base64_data = base64.b64encode(file_data).decode('utf-8') return base64_data except Exception as e: logger.error(f"Error reading Excel logs: {str(e)}") return None def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple: """Analyze text using specified mode and return formatted results.""" # Check if the input text matches the admin password using secure comparison if is_admin_password(text.strip()): # Return logs instead of analysis base64_data = get_logs_as_base64() logs_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") logs_filename = f"prediction_logs_{logs_timestamp}.xlsx" if base64_data: # Create downloadable HTML with the logs html_content = f"""
Logs retrieved at: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
Excel file contains all prediction data with full text of all submissions.
Download Excel LogsNo prediction logs were found or there was an error reading the logs file.