Update app.py
Browse files
app.py
CHANGED
@@ -51,25 +51,22 @@ class TextWindowProcessor:
|
|
51 |
windows.append(" ".join(window))
|
52 |
return windows
|
53 |
|
54 |
-
def create_centered_windows(self, sentences: List[str], window_size: int) ->
|
55 |
-
"""Create
|
56 |
windows = []
|
57 |
window_sentence_indices = []
|
58 |
-
|
59 |
for i in range(len(sentences)):
|
|
|
60 |
half_window = window_size // 2
|
61 |
start_idx = max(0, i - half_window)
|
62 |
end_idx = min(len(sentences), i + half_window + 1)
|
63 |
-
|
64 |
-
|
65 |
-
end_idx = min(len(sentences), window_size)
|
66 |
-
elif end_idx == len(sentences):
|
67 |
-
start_idx = max(0, len(sentences) - window_size)
|
68 |
-
|
69 |
window = sentences[start_idx:end_idx]
|
70 |
windows.append(" ".join(window))
|
71 |
window_sentence_indices.append(list(range(start_idx, end_idx)))
|
72 |
-
|
73 |
return windows, window_sentence_indices
|
74 |
|
75 |
class TextClassifier:
|
@@ -166,7 +163,7 @@ class TextClassifier:
|
|
166 |
}
|
167 |
|
168 |
def detailed_scan(self, text: str) -> Dict:
|
169 |
-
"""Perform a detailed scan with sentence-level analysis."""
|
170 |
if not text.strip():
|
171 |
return {
|
172 |
'sentence_predictions': [],
|
@@ -178,23 +175,23 @@ class TextClassifier:
|
|
178 |
'num_sentences': 0
|
179 |
}
|
180 |
}
|
181 |
-
|
182 |
sentences = self.processor.split_into_sentences(text)
|
183 |
if not sentences:
|
184 |
return {}
|
185 |
-
|
186 |
# Create centered windows for each sentence
|
187 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
188 |
-
|
189 |
# Track scores for each sentence
|
190 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
191 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
192 |
-
|
193 |
# Process windows in batches
|
194 |
for i in range(0, len(windows), BATCH_SIZE):
|
195 |
batch_windows = windows[i:i + BATCH_SIZE]
|
196 |
-
batch_indices = window_sentence_indices[i:i +
|
197 |
-
|
198 |
inputs = self.tokenizer(
|
199 |
batch_windows,
|
200 |
truncation=True,
|
@@ -202,23 +199,51 @@ class TextClassifier:
|
|
202 |
max_length=MAX_LENGTH,
|
203 |
return_tensors="pt"
|
204 |
).to(self.device)
|
205 |
-
|
206 |
with torch.no_grad():
|
207 |
outputs = self.model(**inputs)
|
208 |
probs = F.softmax(outputs.logits, dim=-1)
|
209 |
-
|
|
|
210 |
for window_idx, indices in enumerate(batch_indices):
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
sentence_predictions = []
|
218 |
for i in range(len(sentences)):
|
219 |
if sentence_appearances[i] > 0:
|
220 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
221 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
sentence_predictions.append({
|
223 |
'sentence': sentences[i],
|
224 |
'human_prob': human_prob,
|
@@ -226,7 +251,7 @@ class TextClassifier:
|
|
226 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
227 |
'confidence': max(human_prob, ai_prob)
|
228 |
})
|
229 |
-
|
230 |
return {
|
231 |
'sentence_predictions': sentence_predictions,
|
232 |
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
|
|
51 |
windows.append(" ".join(window))
|
52 |
return windows
|
53 |
|
54 |
+
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
|
55 |
+
"""Create windows with better boundary handling"""
|
56 |
windows = []
|
57 |
window_sentence_indices = []
|
58 |
+
|
59 |
for i in range(len(sentences)):
|
60 |
+
# Calculate window boundaries centered on current sentence
|
61 |
half_window = window_size // 2
|
62 |
start_idx = max(0, i - half_window)
|
63 |
end_idx = min(len(sentences), i + half_window + 1)
|
64 |
+
|
65 |
+
# Create the window
|
|
|
|
|
|
|
|
|
66 |
window = sentences[start_idx:end_idx]
|
67 |
windows.append(" ".join(window))
|
68 |
window_sentence_indices.append(list(range(start_idx, end_idx)))
|
69 |
+
|
70 |
return windows, window_sentence_indices
|
71 |
|
72 |
class TextClassifier:
|
|
|
163 |
}
|
164 |
|
165 |
def detailed_scan(self, text: str) -> Dict:
|
166 |
+
"""Perform a detailed scan with sentence-level analysis and improved boundary handling."""
|
167 |
if not text.strip():
|
168 |
return {
|
169 |
'sentence_predictions': [],
|
|
|
175 |
'num_sentences': 0
|
176 |
}
|
177 |
}
|
178 |
+
|
179 |
sentences = self.processor.split_into_sentences(text)
|
180 |
if not sentences:
|
181 |
return {}
|
182 |
+
|
183 |
# Create centered windows for each sentence
|
184 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
185 |
+
|
186 |
# Track scores for each sentence
|
187 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
188 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
189 |
+
|
190 |
# Process windows in batches
|
191 |
for i in range(0, len(windows), BATCH_SIZE):
|
192 |
batch_windows = windows[i:i + BATCH_SIZE]
|
193 |
+
batch_indices = window_sentence_indices[i:i + batch_size]
|
194 |
+
|
195 |
inputs = self.tokenizer(
|
196 |
batch_windows,
|
197 |
truncation=True,
|
|
|
199 |
max_length=MAX_LENGTH,
|
200 |
return_tensors="pt"
|
201 |
).to(self.device)
|
202 |
+
|
203 |
with torch.no_grad():
|
204 |
outputs = self.model(**inputs)
|
205 |
probs = F.softmax(outputs.logits, dim=-1)
|
206 |
+
|
207 |
+
# Attribute predictions with center-weighted approach
|
208 |
for window_idx, indices in enumerate(batch_indices):
|
209 |
+
center_idx = len(indices) // 2
|
210 |
+
center_weight = 0.7 # Higher weight for center sentence
|
211 |
+
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
212 |
+
|
213 |
+
for pos, sent_idx in enumerate(indices):
|
214 |
+
# Apply higher weight to center sentence
|
215 |
+
weight = center_weight if pos == center_idx else edge_weight
|
216 |
+
sentence_appearances[sent_idx] += weight
|
217 |
+
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
218 |
+
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
219 |
+
|
220 |
+
# Calculate final predictions with boundary smoothing
|
221 |
sentence_predictions = []
|
222 |
for i in range(len(sentences)):
|
223 |
if sentence_appearances[i] > 0:
|
224 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
225 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
226 |
+
|
227 |
+
# Apply minimal smoothing at prediction boundaries
|
228 |
+
if i > 0 and i < len(sentences) - 1:
|
229 |
+
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
230 |
+
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
231 |
+
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
232 |
+
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
233 |
+
|
234 |
+
# Check if we're at a prediction boundary
|
235 |
+
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
236 |
+
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
237 |
+
next_pred = 'human' if next_human > next_ai else 'ai'
|
238 |
+
|
239 |
+
if current_pred != prev_pred or current_pred != next_pred:
|
240 |
+
# Small adjustment at boundaries
|
241 |
+
smooth_factor = 0.1
|
242 |
+
human_prob = (human_prob * (1 - smooth_factor) +
|
243 |
+
(prev_human + next_human) * smooth_factor / 2)
|
244 |
+
ai_prob = (ai_prob * (1 - smooth_factor) +
|
245 |
+
(prev_ai + next_ai) * smooth_factor / 2)
|
246 |
+
|
247 |
sentence_predictions.append({
|
248 |
'sentence': sentences[i],
|
249 |
'human_prob': human_prob,
|
|
|
251 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
252 |
'confidence': max(human_prob, ai_prob)
|
253 |
})
|
254 |
+
|
255 |
return {
|
256 |
'sentence_predictions': sentence_predictions,
|
257 |
'highlighted_text': self.format_predictions_html(sentence_predictions),
|