File size: 13,740 Bytes
7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 3fe982e 7b9d8b2 3fe982e 7b9d8b2 3fe982e 7b9d8b2 3fe982e 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import spacy
from typing import List, Dict
import logging
import os
from colorama import init, Fore, Back, Style
# Initialize colorama for colored terminal output
init()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants - matching original implementations
MAX_LENGTH = 512
MODEL_NAME = "microsoft/deberta-v3-small"
WINDOW_SIZE = 17
WINDOW_OVERLAP = 2
CONFIDENCE_THRESHOLD = 0.65
BATCH_SIZE = 16 # Matching original batch size
class TextProcessor:
def __init__(self):
try:
self.nlp = spacy.load("en_core_web_sm")
except OSError:
logger.info("Downloading spacy model...")
os.system("python -m spacy download en_core_web_sm")
self.nlp = spacy.load("en_core_web_sm")
if 'sentencizer' not in self.nlp.pipe_names:
self.nlp.add_pipe('sentencizer')
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
self.nlp.disable_pipes(*disabled_pipes)
def split_into_sentences(self, text: str) -> List[str]:
doc = self.nlp(text)
return [str(sent).strip() for sent in doc.sents]
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
if len(sentences) < window_size:
return [" ".join(sentences)]
windows = []
stride = window_size - overlap
for i in range(0, len(sentences) - window_size + 1, stride):
window = sentences[i:i + window_size]
windows.append(" ".join(window))
return windows
def create_centered_windows(self, sentences: List[str], window_size: int) -> tuple[List[str], List[List[int]]]:
"""Create windows centered around each sentence for detailed analysis."""
windows = []
window_sentence_indices = []
for i in range(len(sentences)):
# Calculate window boundaries centered on current sentence
half_window = window_size // 2
start_idx = max(0, i - half_window)
end_idx = min(len(sentences), i + half_window + 1)
# Adjust window if we're near the edges
if start_idx == 0:
end_idx = min(len(sentences), window_size)
elif end_idx == len(sentences):
start_idx = max(0, len(sentences) - window_size)
window = sentences[start_idx:end_idx]
windows.append(" ".join(window))
window_sentence_indices.append(list(range(start_idx, end_idx)))
return windows, window_sentence_indices
class AITextDetector:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.processor = TextProcessor()
self.tokenizer = None
self.model = None
self._initialize_model()
def _initialize_model(self):
"""Initialize model and tokenizer."""
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
self.model = AutoModelForSequenceClassification.from_pretrained(
MODEL_NAME,
num_labels=2
).to(self.device)
try:
model_path = "model_20250209_184929_acc1.0000.pt"
checkpoint = torch.load(model_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
logger.info(f"Loaded model from {model_path}")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise
def quick_scan(self, text: str) -> Dict:
"""
Quick scan implementation matching the second original program's predict method.
"""
if self.model is None or self.tokenizer is None:
self._initialize_model()
self.model.eval()
sentences = self.processor.split_into_sentences(text)
windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)
predictions = []
# Process windows in batches to save memory
for i in range(0, len(windows), BATCH_SIZE):
batch_windows = windows[i:i + BATCH_SIZE]
inputs = self.tokenizer(
batch_windows,
truncation=True,
padding=True,
max_length=MAX_LENGTH,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
probs = F.softmax(outputs.logits, dim=-1)
for idx, window in enumerate(batch_windows):
prediction = {
'window': window,
'human_prob': probs[idx][1].item(),
'ai_prob': probs[idx][0].item(),
'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai'
}
predictions.append(prediction)
# Clear memory
del inputs, outputs, probs
if torch.cuda.is_available():
torch.cuda.empty_cache()
return self._aggregate_quick_predictions(predictions)
def _aggregate_quick_predictions(self, predictions: List[Dict]) -> Dict:
"""
Aggregate predictions matching the second original program.
"""
if not predictions:
return {
'human_prob': 0.0,
'ai_prob': 0.0,
'prediction': 'unknown',
'confidence': 0.0,
'num_windows': 0
}
avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions)
avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)
return {
'human_prob': avg_human_prob,
'ai_prob': avg_ai_prob,
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
'confidence': max(avg_human_prob, avg_ai_prob),
'num_windows': len(predictions)
}
def detailed_scan(self, text: str) -> Dict:
"""
Detailed scan implementation matching the first original program's
predict_with_sentence_scores method.
"""
if self.model is None or self.tokenizer is None:
self._initialize_model()
self.model.eval()
sentences = self.processor.split_into_sentences(text)
if not sentences:
return {}
# Create centered windows for each sentence
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
# Track scores for each sentence
sentence_appearances = {i: 0 for i in range(len(sentences))}
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
# Process windows in batches to save memory
for i in range(0, len(windows), BATCH_SIZE):
batch_windows = windows[i:i + BATCH_SIZE]
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
inputs = self.tokenizer(
batch_windows,
truncation=True,
padding=True,
max_length=MAX_LENGTH,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
probs = F.softmax(outputs.logits, dim=-1)
# Attribute window predictions back to individual sentences
for window_idx, indices in enumerate(batch_indices):
for sent_idx in indices:
sentence_appearances[sent_idx] += 1
sentence_scores[sent_idx]['human_prob'] += probs[window_idx][1].item()
sentence_scores[sent_idx]['ai_prob'] += probs[window_idx][0].item()
# Clear memory
del inputs, outputs, probs
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Average the scores and create final sentence-level predictions
sentence_predictions = []
for i in range(len(sentences)):
if sentence_appearances[i] > 0:
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
sentence_predictions.append({
'sentence': sentences[i],
'human_prob': human_prob,
'ai_prob': ai_prob,
'prediction': 'human' if human_prob > ai_prob else 'ai',
'confidence': max(human_prob, ai_prob)
})
# Generate highlighted text output
highlighted_text = self._generate_highlighted_text(sentence_predictions)
return {
'sentence_predictions': sentence_predictions,
'highlighted_text': highlighted_text,
'full_text': text,
'overall_prediction': self._aggregate_detailed_predictions(sentence_predictions)
}
def _generate_highlighted_text(self, sentence_predictions: List[Dict]) -> str:
"""Generate colored text output with highlighting based on predictions."""
highlighted_parts = []
for pred in sentence_predictions:
sentence = pred['sentence']
confidence = pred['confidence']
if confidence >= CONFIDENCE_THRESHOLD:
if pred['prediction'] == 'human':
highlighted_parts.append(f"{Back.GREEN}{sentence}{Style.RESET_ALL}")
else:
highlighted_parts.append(f"{Back.RED}{sentence}{Style.RESET_ALL}")
else:
# Low confidence predictions get a lighter highlight
if pred['prediction'] == 'human':
highlighted_parts.append(f"{Back.LIGHTGREEN_EX}{sentence}{Style.RESET_ALL}")
else:
highlighted_parts.append(f"{Back.LIGHTRED_EX}{sentence}{Style.RESET_ALL}")
return " ".join(highlighted_parts)
def _aggregate_detailed_predictions(self, predictions: List[Dict]) -> Dict:
"""
Aggregate predictions matching the first original program.
"""
if not predictions:
return {
'human_prob': 0.0,
'ai_prob': 0.0,
'prediction': 'unknown',
'confidence': 0.0,
'num_sentences': 0
}
total_human_prob = sum(p['human_prob'] for p in predictions)
total_ai_prob = sum(p['ai_prob'] for p in predictions)
num_sentences = len(predictions)
avg_human_prob = total_human_prob / num_sentences
avg_ai_prob = total_ai_prob / num_sentences
return {
'human_prob': avg_human_prob,
'ai_prob': avg_ai_prob,
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
'confidence': max(avg_human_prob, avg_ai_prob),
'num_sentences': num_sentences
}
def main():
try:
detector = AITextDetector()
while True:
print("\nAI Text Detector")
print("===============")
print("1. Quick Scan")
print("2. Detailed Scan")
print("3. Exit")
choice = input("\nSelect an option (1-3): ").strip()
if choice == "3":
break
if choice not in ["1", "2"]:
print("Invalid choice. Please select 1, 2, or 3.")
continue
text = input("\nEnter text to analyze: ").strip()
if choice == "1":
# Quick scan
result = detector.quick_scan(text)
print("\nQuick Scan Results:")
print("==================")
print(f"Prediction: {result['prediction'].upper()}")
print(f"Confidence: {result['confidence']*100:.1f}%")
print(f"Human Probability: {result['human_prob']*100:.1f}%")
print(f"AI Probability: {result['ai_prob']*100:.1f}%")
print(f"Number of windows analyzed: {result['num_windows']}")
else:
# Detailed scan
result = detector.detailed_scan(text)
print("\nDetailed Analysis:")
print("=================")
# Print sentence-level predictions
for pred in result['sentence_predictions']:
confidence = pred['confidence'] * 100
print(f"\nSentence: {pred['sentence']}")
print(f"Prediction: {pred['prediction'].upper()}")
print(f"Confidence: {confidence:.1f}%")
# Print highlighted text
print("\nHighlighted Text Analysis:")
print("=========================")
print(result['highlighted_text'])
# Print final prediction
final_pred = result['overall_prediction']
print(f"\nFINAL PREDICTION: {final_pred['prediction'].upper()}")
print(f"Overall confidence: {final_pred['confidence']*100:.1f}%")
print(f"Number of sentences analyzed: {final_pred['num_sentences']}")
except Exception as e:
logger.error(f"An error occurred: {e}")
raise
if __name__ == "__main__":
main() |