Spaces:
Running
Running
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
import time | |
import re | |
from markdownify import markdownify | |
from smolagents import Tool, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool, LiteLLMModel, HfApiModel | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
model_qwen = HfApiModel( | |
model_id='llava-hf/llava-1.5-13b-hf', | |
max_tokens=2048, # Reasonable default for this model | |
temperature=0.2, # You can adjust this based on how creative you want answers to be | |
custom_role_conversions=None | |
) | |
class DownloadTaskAttachmentTool(Tool): | |
name = "download_file" | |
description = "Downloads the file attached to the task ID" | |
inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}} | |
output_type = "string" | |
def forward(self, task_id: str) -> str: | |
""" | |
Downloads a file associated with the given task ID. | |
Returns the file path where the file is saved locally. | |
""" | |
file_url = f"{DEFAULT_API_URL}/files/{task_id}" | |
local_file_path = f"downloads/{task_id}.file" | |
print(f"Downloading file for task ID {task_id} from {file_url}...") | |
try: | |
response = requests.get(file_url, stream=True, timeout=15) | |
response.raise_for_status() | |
os.makedirs("downloads", exist_ok=True) | |
with open(local_file_path, "wb") as file: | |
for chunk in response.iter_content(chunk_size=8192): | |
file.write(chunk) | |
print(f"File downloaded successfully: {local_file_path}") | |
return local_file_path | |
except requests.exceptions.RequestException as e: | |
print(f"Error downloading file for task {task_id}: {e}") | |
raise | |
def __init__(self, *args, **kwargs): | |
self.is_initialized = False | |
class VisitWebpageTool(Tool): | |
name = "visit_webpage" | |
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages." | |
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}} | |
output_type = "string" | |
def forward(self, url: str) -> str: | |
try: | |
import requests | |
from markdownify import markdownify | |
from requests.exceptions import RequestException | |
from smolagents.utils import truncate_content | |
except ImportError as e: | |
raise ImportError( | |
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`." | |
) from e | |
try: | |
# Send a GET request to the URL with a 20-second timeout | |
response = requests.get(url, timeout=20) | |
response.raise_for_status() # Raise an exception for bad status codes | |
# Convert the HTML content to Markdown | |
markdown_content = markdownify(response.text).strip() | |
# Remove multiple line breaks | |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content) | |
return truncate_content(markdown_content, 10000) | |
except requests.exceptions.Timeout: | |
return "The request timed out. Please try again later or check the URL." | |
except RequestException as e: | |
return f"Error fetching the webpage: {str(e)}" | |
except Exception as e: | |
return f"An unexpected error occurred: {str(e)}" | |
def __init__(self, *args, **kwargs): | |
self.is_initialized = False | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
class BasicAgent: | |
def __init__(self): | |
self.agent = CodeAgent( | |
model= LiteLLMModel(model_id="openrouter/meta-llama/llama-4-maverick:free", api_key="fe55a8dfeff8a0bfd316f17ab6c"), | |
tools=[DuckDuckGoSearchTool(), WikipediaSearchTool(), VisitWebpageTool(), DownloadTaskAttachmentTool()], | |
add_base_tools=True, | |
additional_authorized_imports=['pandas','numpy','csv','subprocess', 'exec'] | |
) | |
print("BasicAgent initialized.") | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
agent_answer = self.agent.run(question) | |
print(f"Agent returning answer: {agent_answer}") | |
return agent_answer | |
def download_file(self, task_id: str) -> str: | |
""" | |
Downloads a file associated with the given task ID. | |
Returns the file path where the file is saved locally. | |
""" | |
file_url = f"{DEFAULT_API_URL}/files/{task_id}" | |
local_file_path = f"downloads/{task_id}.file" | |
print(f"Downloading file for task ID {task_id} from {file_url}...") | |
try: | |
response = requests.get(file_url, stream=True, timeout=15) | |
response.raise_for_status() | |
os.makedirs("downloads", exist_ok=True) | |
with open(local_file_path, "wb") as file: | |
for chunk in response.iter_content(chunk_size=8192): | |
file.write(chunk) | |
print(f"File downloaded successfully: {local_file_path}") | |
return local_file_path | |
except requests.exceptions.RequestException as e: | |
print(f"Error downloading file for task {task_id}: {e}") | |
raise | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
requires_file = item.get("requires_file", False) | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
# Download file if required | |
if requires_file: | |
file_path = agent.download_file(task_id) | |
print(f"File for task {task_id} saved at: {file_path}") | |
# Optionally, pass the file path to the agent if needed | |
submitted_answer = agent(f"{question_text} (File: {file_path})") | |
else: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
time.sleep(2) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |