#!/usr/bin/env python3 import sys import numpy as np import librosa from functools import lru_cache import time import logging from .backends import FasterWhisperASR, MLXWhisper, WhisperTimestampedASR, OpenaiApiASR from .online_asr import OnlineASRProcessor, VACOnlineASRProcessor logger = logging.getLogger(__name__) WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split( "," ) def create_tokenizer(lan): """returns an object that has split function that works like the one of MosesTokenizer""" assert ( lan in WHISPER_LANG_CODES ), "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES) if lan == "uk": import tokenize_uk class UkrainianTokenizer: def split(self, text): return tokenize_uk.tokenize_sents(text) return UkrainianTokenizer() # supported by fast-mosestokenizer if ( lan in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split() ): from mosestokenizer import MosesSentenceSplitter return MosesSentenceSplitter(lan) # the following languages are in Whisper, but not in wtpsplit: if ( lan in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split() ): logger.debug( f"{lan} code is not supported by wtpsplit. Going to use None lang_code option." ) lan = None from wtpsplit import WtP # downloads the model from huggingface on the first use wtp = WtP("wtp-canine-s-12l-no-adapters") class WtPtok: def split(self, sent): return wtp.split(sent, lang_code=lan) return WtPtok() def backend_factory(args): backend = args.backend if backend == "openai-api": logger.debug("Using OpenAI API.") asr = OpenaiApiASR(lan=args.lan) else: if backend == "faster-whisper": asr_cls = FasterWhisperASR elif backend == "mlx-whisper": asr_cls = MLXWhisper else: asr_cls = WhisperTimestampedASR # Only for FasterWhisperASR and WhisperTimestampedASR size = args.model t = time.time() logger.info(f"Loading Whisper {size} model for language {args.lan}...") asr = asr_cls( modelsize=size, lan=args.lan, cache_dir=args.model_cache_dir, model_dir=args.model_dir, ) e = time.time() logger.info(f"done. It took {round(e-t,2)} seconds.") # Apply common configurations if getattr(args, "vad", False): # Checks if VAD argument is present and True logger.info("Setting VAD filter") asr.use_vad() language = args.lan if args.task == "translate": asr.set_translate_task() tgt_language = "en" # Whisper translates into English else: tgt_language = language # Whisper transcribes in this language # Create the tokenizer if args.buffer_trimming == "sentence": tokenizer = create_tokenizer(tgt_language) else: tokenizer = None return asr, tokenizer def online_factory(args, asr, tokenizer, logfile=sys.stderr): if args.vac: online = VACOnlineASRProcessor( args.min_chunk_size, asr, tokenizer, logfile=logfile, buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec), confidence_validation = args.confidence_validation ) else: online = OnlineASRProcessor( asr, tokenizer, logfile=logfile, buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec), confidence_validation = args.confidence_validation ) return online def asr_factory(args, logfile=sys.stderr): """ Creates and configures an ASR and ASR Online instance based on the specified backend and arguments. """ asr, tokenizer = backend_factory(args) online = online_factory(args, asr, tokenizer, logfile=logfile) return asr, online def warmup_asr(asr, warmup_file=None, timeout=5): """ Warmup the ASR model by transcribing a short audio file. """ import os import tempfile if warmup_file is None: # Download JFK sample if not already present jfk_url = "https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav" temp_dir = tempfile.gettempdir() warmup_file = os.path.join(temp_dir, "whisper_warmup_jfk.wav") if not os.path.exists(warmup_file): logger.debug(f"Downloading warmup file from {jfk_url}") print(f"Downloading warmup file from {jfk_url}") import time import urllib.request import urllib.error import socket original_timeout = socket.getdefaulttimeout() socket.setdefaulttimeout(timeout) start_time = time.time() try: urllib.request.urlretrieve(jfk_url, warmup_file) logger.debug(f"Download successful in {time.time() - start_time:.2f}s") except (urllib.error.URLError, socket.timeout) as e: logger.warning(f"Download failed: {e}. Proceeding without warmup.") return False finally: socket.setdefaulttimeout(original_timeout) elif not warmup_file: return False if not warmup_file or not os.path.exists(warmup_file) or os.path.getsize(warmup_file) == 0: logger.warning(f"Warmup file {warmup_file} invalid or missing.") return False print(f"Warmping up Whisper with {warmup_file}") try: import librosa audio, sr = librosa.load(warmup_file, sr=16000) except Exception as e: logger.warning(f"Failed to load audio file: {e}") return False # Process the audio asr.transcribe(audio) logger.info("Whisper is warmed up")