AnyaSchen commited on
Commit
b8a4e79
·
1 Parent(s): 46ae0d5

feat: try to add language detector 3

Browse files
Files changed (2) hide show
  1. language_detector.py +7 -7
  2. requirements.txt +1 -1
language_detector.py CHANGED
@@ -1,4 +1,4 @@
1
- import whisper
2
  import numpy as np
3
  import logging
4
  import io
@@ -14,7 +14,7 @@ class LanguageDetector:
14
  Args:
15
  model_name (str): Name of the Whisper model to use. Default is "tiny" which is sufficient for language detection.
16
  """
17
- self.model = whisper.load_model(model_name)
18
  logger.info(f"Loaded Whisper model {model_name} for language detection")
19
 
20
  def detect_language_from_file(self, audio_file_path):
@@ -30,11 +30,11 @@ class LanguageDetector:
30
  """
31
  try:
32
  # Load and preprocess audio
33
- audio = whisper.load_audio(audio_file_path)
34
- audio = whisper.pad_or_trim(audio)
35
 
36
  # Make log-Mel spectrogram
37
- mel = whisper.log_mel_spectrogram(audio).to(self.model.device)
38
 
39
  # Detect language
40
  _, probs = self.model.detect_language(mel)
@@ -67,10 +67,10 @@ class LanguageDetector:
67
  audio = (audio * 32768).astype(np.int16)
68
 
69
  # Load and preprocess audio
70
- audio = whisper.pad_or_trim(audio)
71
 
72
  # Make log-Mel spectrogram
73
- mel = whisper.log_mel_spectrogram(audio).to(self.model.device)
74
 
75
  # Detect language
76
  _, probs = self.model.detect_language(mel)
 
1
+ import whisper as whp
2
  import numpy as np
3
  import logging
4
  import io
 
14
  Args:
15
  model_name (str): Name of the Whisper model to use. Default is "tiny" which is sufficient for language detection.
16
  """
17
+ self.model = whp.load_model(model_name)
18
  logger.info(f"Loaded Whisper model {model_name} for language detection")
19
 
20
  def detect_language_from_file(self, audio_file_path):
 
30
  """
31
  try:
32
  # Load and preprocess audio
33
+ audio = whp.load_audio(audio_file_path)
34
+ audio = whp.pad_or_trim(audio)
35
 
36
  # Make log-Mel spectrogram
37
+ mel = whp.log_mel_spectrogram(audio).to(self.model.device)
38
 
39
  # Detect language
40
  _, probs = self.model.detect_language(mel)
 
67
  audio = (audio * 32768).astype(np.int16)
68
 
69
  # Load and preprocess audio
70
+ audio = whp.pad_or_trim(audio)
71
 
72
  # Make log-Mel spectrogram
73
+ mel = whp.log_mel_spectrogram(audio).to(self.model.device)
74
 
75
  # Detect language
76
  _, probs = self.model.detect_language(mel)
requirements.txt CHANGED
@@ -13,5 +13,5 @@ setuptools>=65.5.1
13
  librosa>=0.10.0
14
  mosestokenizer
15
  hf_xet
16
- whisper
17
  librosa
 
13
  librosa>=0.10.0
14
  mosestokenizer
15
  hf_xet
16
+ openai-whisper
17
  librosa