File size: 13,192 Bytes
5818583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Install required packages
# !pip install gradio yfinance beautifulsoup4 requests pandas numpy transformers xgboost scikit-learn python-dotenv
# !pip install python-decouple
import gradio as gr
import yfinance as yf
import requests
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import xgboost as xgb
from datetime import datetime, timedelta
import json
import warnings
import os
from dotenv import load_dotenv
from decouple import config
import logging


warnings.filterwarnings('ignore')
load_dotenv()

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# WhatsApp API Configuration
WHATSAPP_API_BASE_URL = os.getenv('WHATSAPP_API_BASE_URL')
WHATSAPP_API_KEY = os.getenv('WHATSAPP_API_KEY')
WHATSAPP_INSTANCE_NAME = os.getenv('WHATSAPP_INSTANCE_NAME')

class ConfigManager:
    """
    Centralized configuration management
    """
    @staticmethod
    def get_api_config():
        """
        Retrieve API configurations securely
        """
        return {
            'amfi_base_url': config('AMFI_API_URL', default='https://api.mfapi.in/mf'),
        }

class WhatsAppManager:
    def __init__(self, base_url, api_key):
        self.base_url = base_url
        self.api_key = api_key

    def send_message(self, instance, phone, message):
         if not self.base_url or not self.api_key or not instance:
            logging.error("WhatsApp API base URL, key or instance not configured.")
            return "WhatsApp API base URL, key or instance not configured."
            
         headers = {
            'Content-Type': 'application/json',
            'Authorization': self.api_key
        }
         payload = json.dumps({
            "phone": phone,
            "message": message
        })
         try:
            response = requests.post(f"{self.base_url}/message/sendText/{instance}", headers=headers, data=payload)
            response.raise_for_status()
            return response.json()
         except requests.exceptions.RequestException as e:
            logging.error(f"Error sending WhatsApp message: {str(e)}")
            return f"Error sending message: {str(e)}"


class AMFIApi:
    """
    Mutual Fund API Handler with real-time data fetching
    """
    @staticmethod
    def get_all_mutual_funds():
        """
        Retrieve comprehensive mutual funds list from AMFI API
        """
        config = ConfigManager.get_api_config()
        try:
            response = requests.get(config['amfi_base_url'])
            if response.status_code == 200:
                return response.json()
            else:
                logging.error("Failed to fetch mutual fund data.")
                return "Error fetching mutual funds."
        except Exception as e:
            logging.error(f"API request error: {str(e)}")
            return f"Error fetching mutual funds: {str(e)}"

    @staticmethod
    def analyze_mutual_fund(scheme_code):
        """
        Fetch real-time mutual fund NAV and analyze returns.
        """
        try:
            config = ConfigManager.get_api_config()
            amfi_url = f"{config['amfi_base_url']}/{scheme_code}"
            response = requests.get(amfi_url)

            if response.status_code != 200:
                logging.error("Failed to fetch NAV data.")
                return None, None, "Failed to fetch live NAV data."

            fund_data = response.json()
            if 'data' not in fund_data:
                logging.error("Invalid fund data received.")
                return None, None, "Invalid fund data received."

            nav_data = pd.DataFrame(fund_data['data'])

            # Data type conversions
            nav_data['date'] = pd.to_datetime(nav_data['date'], format='%d-%m-%Y')
            nav_data['nav'] = pd.to_numeric(nav_data['nav'], errors='coerce')

            # Sort by date
            nav_data = nav_data.sort_values('date')

            # Calculate returns
            latest_nav = nav_data.iloc[-1]['nav']
            first_nav = nav_data.iloc[0]['nav']

            returns = {
                'scheme_name': fund_data.get('meta', {}).get('scheme_name', 'Unknown'),
                'current_nav': latest_nav,
                'initial_nav': first_nav,
                'total_return': ((latest_nav - first_nav) / first_nav) * 100
            }

            return returns, nav_data[['date', 'nav']].rename(columns={'nav': 'NAV'}), None

        except Exception as e:
            logging.error(f"Analysis error: {str(e)}")
            return None, None, f"Analysis error: {str(e)}"


def get_stock_data(symbol, period='3y'):
    try:
        logging.info(f"Fetching stock data for symbol: {symbol}")
        
        stock = yf.Ticker(symbol)
        logging.info(f"Ticker object created successfully for symbol: {symbol}")
        hist = stock.history(period=period)
        if hist.empty:
            logging.error(f"No stock data available for symbol: {symbol} after fetching history.")
            return f"No stock data available for symbol: {symbol}"
        logging.info(f"Successfully fetched stock data for symbol: {symbol}")
        return hist
    except Exception as e:
        logging.error(f"Error fetching stock data for symbol: {symbol}, error: {str(e)}")
        return f"Error fetching stock data: {str(e)}"

def calculate_rsi(data, periods=14):
    delta = data.diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=periods).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=periods).mean()
    rs = gain / loss
    return 100 - (100 / (1 + rs))

def predict_stock(symbol):
    df = get_stock_data(symbol)
    if isinstance(df, str):
        return df

    logging.info(f"Dataframe before feature creation for {symbol}: \n{df.head()}")

    df['SMA_20'] = df['Close'].rolling(window=20).mean()
    df['SMA_50'] = df['Close'].rolling(window=50).mean()
    df['RSI'] = calculate_rsi(df['Close'])

    features = ['SMA_20', 'SMA_50', 'RSI', 'Volume']
    X = df[features].dropna()
    y = df['Close'].shift(-1).dropna()

    logging.info(f"Dataframe after feature creation: \nX:\n{X.head()}\ny:\n{y.head()}")
    
    #Align X and Y
    X = X.iloc[:len(y)]

    split = int(len(X) * 0.8)
    X_train, X_test = X[:split], X[split:]
    y_train, y_test = y[:split], y[split:]
    

    logging.info(f"Data split details: \nTrain Data size: {len(X_train)}\nTest Data Size: {len(X_test)}")

    if len(X_train) == 0 or len(y_train) == 0:
      logging.error(f"Insufficient training data for prediction for symbol: {symbol}")
      return "Insufficient data for prediction."
    
    model = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=100)
    model.fit(X_train, y_train)

    if not X_test.empty:
        last_data = X_test.iloc[-1:]
        prediction = model.predict(last_data)[0]
        return prediction
    else:
        logging.warning(f"No test data available for prediction for symbol: {symbol}")
        return "No test data available for prediction."

def analyze_sentiment(text):
    tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
    model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")

    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model(**inputs)
    predictions = outputs.logits.softmax(dim=-1)

    labels = ['negative', 'neutral', 'positive']
    return {label: float(pred) for label, pred in zip(labels, predictions[0])}

def setup_notifications(phone, stock, mf, sentiment):
    if not WHATSAPP_API_BASE_URL or not WHATSAPP_API_KEY or not WHATSAPP_INSTANCE_NAME:
        return "WhatsApp API credentials or instance missing."

    whatsapp_manager = WhatsAppManager(WHATSAPP_API_BASE_URL, WHATSAPP_API_KEY)

    try:
        result = whatsapp_manager.send_message(
            WHATSAPP_INSTANCE_NAME,
            phone,
            "🎉 Welcome to AI Finance Manager!\nYour WhatsApp notifications have been set up successfully."
        )

        alerts = []
        if stock: alerts.append("Stock")
        if mf: alerts.append("Mutual Fund")
        if sentiment: alerts.append("Sentiment")

        return f"WhatsApp notifications set up for: {', '.join(alerts)} - {result}"
    except Exception as e:
        logging.error(f"Error setting up notifications: {str(e)}")
        return f"Error setting up notifications: {str(e)}"

# Chatbot Function
def chatbot_response(user_input):
    user_input = user_input.lower()

    if "stock" in user_input:
        parts = user_input.split()
        if len(parts) > 1:
             symbol = parts[-1].upper()
             prediction = predict_stock(symbol)
             if isinstance(prediction,str):
                return prediction
             else:
                return f"The predicted next-day closing price for {symbol} is {prediction:.2f}"
        else:
            return "Please provide a stock symbol."


    elif "mutual fund" in user_input:
          parts = user_input.split()
          if len(parts) > 2 and parts[1] == "code":
              scheme_code = parts[-1]
              mf_returns, mf_nav_history, error = AMFIApi.analyze_mutual_fund(scheme_code)
              if error:
                  return error
              else:
                   return f"Mutual Fund Analysis:\nName: {mf_returns.get('scheme_name', 'Unknown')}\nCurrent NAV: {mf_returns.get('current_nav', 'N/A'):.2f}\nTotal Return: {mf_returns.get('total_return', 'N/A'):.2f}%"
          else:
              return "Please enter the mutual fund scheme code for analysis (e.g. 'analyze mutual fund code 123456')."
    elif "sentiment" in user_input:
      return "Enter the financial news text for sentiment analysis."
    elif user_input.startswith("analyze sentiment"):
        text = user_input[len("analyze sentiment"):].strip()
        if text:
            sentiment_result = analyze_sentiment(text)
            if sentiment_result:
              return f"Sentiment Analysis: {sentiment_result}"
            else:
                return "No text provided for sentiment analysis."
        else:
          return "Please provide text for sentiment analysis."
    return "I can help with Stock Analysis, Mutual Funds, and Sentiment Analysis. Please ask your query."


# Create Gradio Interface
def create_gradio_interface():
    with gr.Blocks() as app:
        gr.Markdown("# AI Finance & Stock Manager with Chat and WhatsApp Alerts")

        with gr.Tab("Chat"):
            chat_input = gr.Textbox(label="Ask about Stocks, Mutual Funds, or Sentiment Analysis")
            chat_output = gr.Textbox(label="AI Response", interactive=False)
            chat_btn = gr.Button("Ask AI")

        with gr.Tab("Stock Analysis"):
            stock_input = gr.Textbox(label="Enter Stock Symbol (e.g., AAPL)")
            stock_btn = gr.Button("Analyze Stock")
            stock_output = gr.DataFrame()
            prediction_output = gr.Number(label="Predicted Next Day Close Price")

        with gr.Tab("Mutual Fund Analysis"):
             mf_code = gr.Textbox(label="Enter Scheme Code")
             mf_analyze_btn = gr.Button("Analyze Fund")

            # Analysis Outputs
             mf_returns = gr.JSON(label="Fund Returns")
             mf_nav_history = gr.DataFrame(label="NAV History")
             mf_analysis_error = gr.Textbox(label="Error Messages", visible=False)

        with gr.Tab("WhatsApp Notifications"):
            phone_input = gr.Textbox(label="WhatsApp Number (with country code)")
            enable_stock_alerts = gr.Checkbox(label="Stock Alerts")
            enable_mf_alerts = gr.Checkbox(label="Mutual Fund Alerts")
            enable_sentiment_alerts = gr.Checkbox(label="Sentiment Alerts")
            notification_status = gr.Textbox(label="Notification Status", interactive=False)
            setup_btn = gr.Button("Setup WhatsApp Notifications")

        with gr.Tab("Sentiment Analysis"):
            text_input = gr.Textbox(label="Enter financial news or text")
            sentiment_btn = gr.Button("Analyze Sentiment")
            sentiment_output = gr.Label()
        # Event Handlers
        chat_btn.click(
            fn=chatbot_response,
            inputs=chat_input,
            outputs=chat_output
        )

        stock_btn.click(
            fn=lambda x: (get_stock_data(x), predict_stock(x)),
            inputs=stock_input,
            outputs=[stock_output, prediction_output]
        )
        mf_analyze_btn.click(
            fn=AMFIApi.analyze_mutual_fund,
            inputs=mf_code,
            outputs=[mf_returns,mf_nav_history,mf_analysis_error]
        )

        sentiment_btn.click(
            fn=analyze_sentiment,
            inputs=text_input,
            outputs=sentiment_output
        )
        setup_btn.click(
            fn=setup_notifications,
            inputs=[phone_input, enable_stock_alerts, enable_mf_alerts, enable_sentiment_alerts],
            outputs=notification_status
         )
    return app


# Launch the app
if __name__ == "__main__":
    app = create_gradio_interface()
    app.launch(share=True, debug=True)