Another003 commited on
Commit
338a103
·
1 Parent(s): 833c9f8
Files changed (3) hide show
  1. Dockerfile +11 -0
  2. main.py +96 -0
  3. requirements.txt +4 -0
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10.9
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ COPY . .
10
+
11
+ CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
main.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
3
+ from datasets import load_dataset
4
+ from googletrans import Translator
5
+ from fastapi import FastAPI, File, UploadFile, HTTPException
6
+ from fastapi.responses import JSONResponse
7
+ from pyngrok import ngrok
8
+
9
+ app = FastAPI()
10
+
11
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
13
+
14
+ model_id = "openai/whisper-large-v3"
15
+
16
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
17
+ model.to(device)
18
+
19
+ processor = AutoProcessor.from_pretrained(model_id)
20
+
21
+ pipe = pipeline(
22
+ "automatic-speech-recognition",
23
+ model=model,
24
+ tokenizer=processor.tokenizer,
25
+ feature_extractor=processor.feature_extractor,
26
+ max_new_tokens=256,
27
+ chunk_length_s=30,
28
+ batch_size=16,
29
+ return_timestamps=True,
30
+ torch_dtype=torch_dtype,
31
+ device=device,
32
+ )
33
+
34
+ dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
35
+
36
+ @app.post("/voice_recognition")
37
+ async def process_audio(file: UploadFile = File(...)):
38
+ try:
39
+ # File
40
+ file_path = f"{file.filename}"
41
+ with open(file_path, "wb") as f:
42
+ f.write(file.file.read())
43
+
44
+ # JP
45
+ original = pipe(file_path)
46
+ original_version = original["text"]
47
+
48
+ # EN
49
+ result = pipe(file_path, generate_kwargs={"task": "translate"})
50
+ hasil = result["text"]
51
+
52
+ # ID
53
+ detect = detect_google(hasil)
54
+ id_ver = translate_google(hasil, f"{detect}", "ID")
55
+
56
+ # Additional modifications
57
+ id_ver = modify_text(id_ver)
58
+
59
+ return JSONResponse(content={"response": {"jp_text": original_version, "en_text": hasil, "id_text": id_ver}}, status_code=200)
60
+
61
+ except Exception as e:
62
+ return HTTPException(status_code=500, detail=f"Error: {e}")
63
+
64
+ def detect_google(text):
65
+ try:
66
+ translator = Translator()
67
+ detected_lang = translator.detect(text)
68
+ return detected_lang.lang.upper()
69
+ except Exception as e:
70
+ print(f"Error detect: {e}")
71
+ return None
72
+
73
+ def translate_google(text, source, target):
74
+ try:
75
+ translator = Translator()
76
+ translated_text = translator.translate(text, src=source, dest=target)
77
+ return translated_text.text
78
+ except Exception as e:
79
+ print(f"Error translate: {e}")
80
+ return None
81
+
82
+ def modify_text(text):
83
+ # Additional modifications, case-sensitive
84
+ replacements = {
85
+ "Tuan": "Master",
86
+ "tuan": "Master",
87
+ "Guru": "Master",
88
+ "guru": "Master",
89
+ "Monica": "Monika",
90
+ "monica": "Monika",
91
+ }
92
+
93
+ for original, replacement in replacements.items():
94
+ text = text.replace(original, replacement)
95
+
96
+ return text
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ fastapi
2
+ uvicorn
3
+ googletrans==4.0.0rc1
4
+ --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]