Spaces:
Sleeping
Sleeping
import os | |
cache_dir = "/tmp/huggingface_cache" | |
if not os.path.exists(cache_dir): | |
os.makedirs(cache_dir, exist_ok=True) | |
os.environ["TRANSFORMERS_CACHE"] = cache_dir | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
from datasets import load_dataset | |
from googletrans import Translator | |
from fastapi import FastAPI, File, UploadFile, HTTPException | |
from fastapi.responses import JSONResponse | |
app = FastAPI() | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=256, | |
chunk_length_s=30, | |
batch_size=16, | |
return_timestamps=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") | |
async def process_audio(file: UploadFile = File(...)): | |
try: | |
# File | |
file_path = f"{file.filename}" | |
with open(file_path, "wb") as f: | |
f.write(file.file.read()) | |
# JP | |
original = pipe(file_path) | |
original_version = original["text"] | |
# EN | |
result = pipe(file_path, generate_kwargs={"task": "translate"}) | |
hasil = result["text"] | |
# ID | |
detect = detect_google(hasil) | |
id_ver = translate_google(hasil, f"{detect}", "ID") | |
# Additional modifications | |
id_ver = modify_text(id_ver) | |
return JSONResponse(content={"response": {"jp_text": original_version, "en_text": hasil, "id_text": id_ver}}, status_code=200) | |
except Exception as e: | |
return HTTPException(status_code=500, detail=f"Error: {e}") | |
def detect_google(text): | |
try: | |
translator = Translator() | |
detected_lang = translator.detect(text) | |
return detected_lang.lang.upper() | |
except Exception as e: | |
print(f"Error detect: {e}") | |
return None | |
def translate_google(text, source, target): | |
try: | |
translator = Translator() | |
translated_text = translator.translate(text, src=source, dest=target) | |
return translated_text.text | |
except Exception as e: | |
print(f"Error translate: {e}") | |
return None | |
def modify_text(text): | |
# Additional modifications, case-sensitive | |
replacements = { | |
"Tuan": "Master", | |
"tuan": "Master", | |
"Guru": "Master", | |
"guru": "Master", | |
"Monica": "Monika", | |
"monica": "Monika", | |
} | |
for original, replacement in replacements.items(): | |
text = text.replace(original, replacement) | |
return text |