Ankitajadhav commited on
Commit
1e8f246
·
verified ·
1 Parent(s): c9bb9f0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -7,9 +7,9 @@ sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
7
  from sentence_transformers import SentenceTransformer
8
  import chromadb
9
  from datasets import load_dataset
10
- from transformers import AutoModelForCausalLM, AutoTokenizer
11
  import gradio as gr
12
-
13
 
14
  # Function to clear the cache
15
  def clear_cache(model_name):
@@ -82,8 +82,11 @@ vector_store.populate_vectors(dataset=None)
82
  # model = AutoModelForCausalLM.from_pretrained(model_name)
83
 
84
  # load model orca-mini general purpose model
85
- tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
86
- model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
 
 
 
87
 
88
  # Define the chatbot response function
89
  def chatbot_response(user_input):
 
7
  from sentence_transformers import SentenceTransformer
8
  import chromadb
9
  from datasets import load_dataset
10
+ # from transformers import AutoModelForCausalLM, AutoTokenizer
11
  import gradio as gr
12
+ from mistral_inference.model import Transformer
13
 
14
  # Function to clear the cache
15
  def clear_cache(model_name):
 
82
  # model = AutoModelForCausalLM.from_pretrained(model_name)
83
 
84
  # load model orca-mini general purpose model
85
+ # tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
86
+ # model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
87
+
88
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
89
+ model = Transformer.from_folder(mistral_models_path)
90
 
91
  # Define the chatbot response function
92
  def chatbot_response(user_input):