Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,9 +7,9 @@ sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
import chromadb
|
9 |
from datasets import load_dataset
|
10 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
import gradio as gr
|
12 |
-
|
13 |
|
14 |
# Function to clear the cache
|
15 |
def clear_cache(model_name):
|
@@ -82,8 +82,11 @@ vector_store.populate_vectors(dataset=None)
|
|
82 |
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
83 |
|
84 |
# load model orca-mini general purpose model
|
85 |
-
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
86 |
-
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
|
|
|
|
|
|
87 |
|
88 |
# Define the chatbot response function
|
89 |
def chatbot_response(user_input):
|
|
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
import chromadb
|
9 |
from datasets import load_dataset
|
10 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
import gradio as gr
|
12 |
+
from mistral_inference.model import Transformer
|
13 |
|
14 |
# Function to clear the cache
|
15 |
def clear_cache(model_name):
|
|
|
82 |
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
83 |
|
84 |
# load model orca-mini general purpose model
|
85 |
+
# tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
86 |
+
# model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
87 |
+
|
88 |
+
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
|
89 |
+
model = Transformer.from_folder(mistral_models_path)
|
90 |
|
91 |
# Define the chatbot response function
|
92 |
def chatbot_response(user_input):
|