Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,110 +1,110 @@
|
|
1 |
-
from flask import Flask, request, jsonify, send_from_directory
|
2 |
-
from modelscope.pipelines import pipeline
|
3 |
-
from modelscope.utils.constant import Tasks
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
-
import torch
|
6 |
-
import imageio
|
7 |
-
import uuid
|
8 |
-
import os
|
9 |
-
|
10 |
-
app = Flask(__name__)
|
11 |
-
|
12 |
-
# Load models once
|
13 |
-
modelscope_model = pipeline(Tasks.text_to_video_synthesis, model='damo-vilab/modelscope-text-to-video-synthesis')
|
14 |
-
zeroscope_model = DiffusionPipeline.from_pretrained(
|
15 |
-
"cerspense/zeroscope_v2_576w",
|
16 |
-
torch_dtype=torch.float16
|
17 |
-
).to("cuda")
|
18 |
-
|
19 |
-
# Output directory (for temporary files)
|
20 |
-
os.makedirs("output", exist_ok=True)
|
21 |
-
|
22 |
-
# Serve the generated video dynamically (no permanent storage)
|
23 |
-
@app.route('/generate-video', methods=['POST'])
|
24 |
-
def generate_video():
|
25 |
-
data = request.get_json()
|
26 |
-
|
27 |
-
model_type = data.get("model", "").lower()
|
28 |
-
if not model_type:
|
29 |
-
return jsonify({"error": "Model is required: 'modelscope' or 'zeroscope'"}), 400
|
30 |
-
|
31 |
-
params = data.get("params", {})
|
32 |
-
prompt = params.get("prompt")
|
33 |
-
if not prompt:
|
34 |
-
return jsonify({"error": "Prompt is required in 'params'"}), 400
|
35 |
-
|
36 |
-
# Common settings
|
37 |
-
seed = params.get("seed", 42)
|
38 |
-
output_filename = f"{uuid.uuid4().hex}.mp4"
|
39 |
-
output_path = os.path.join("output", output_filename)
|
40 |
-
|
41 |
-
try:
|
42 |
-
if model_type == "modelscope":
|
43 |
-
# Extract ModelScope-specific parameters
|
44 |
-
result = modelscope_model({
|
45 |
-
"text": prompt,
|
46 |
-
"output_path": output_path,
|
47 |
-
"seed": seed,
|
48 |
-
"fps": params.get("fps", 8),
|
49 |
-
"num_frames": params.get("num_frames", 16),
|
50 |
-
"batch_size": params.get("batch_size", 1),
|
51 |
-
"decode_audio": params.get("decode_audio", False),
|
52 |
-
"resolution": params.get("resolution", "512x512")
|
53 |
-
})
|
54 |
-
video_path = result["output_path"]
|
55 |
-
|
56 |
-
elif model_type == "zeroscope":
|
57 |
-
# Extract Zeroscope-specific parameters
|
58 |
-
inference_steps = params.get("num_inference_steps", 25)
|
59 |
-
height = params.get("height", 320)
|
60 |
-
width = params.get("width", 576)
|
61 |
-
fps = params.get("fps", 8)
|
62 |
-
|
63 |
-
generator = torch.manual_seed(seed)
|
64 |
-
|
65 |
-
with torch.autocast("cuda"):
|
66 |
-
output = zeroscope_model(
|
67 |
-
prompt,
|
68 |
-
num_inference_steps=inference_steps,
|
69 |
-
height=height,
|
70 |
-
width=width,
|
71 |
-
generator=generator
|
72 |
-
)
|
73 |
-
video_frames = output.frames
|
74 |
-
|
75 |
-
# Save as video
|
76 |
-
imageio.mimsave(output_path, video_frames, fps=fps)
|
77 |
-
video_path = output_path
|
78 |
-
|
79 |
-
else:
|
80 |
-
return jsonify({"error": f"Unsupported model type: {model_type}"}), 400
|
81 |
-
|
82 |
-
# Return a URL to the generated video file
|
83 |
-
video_url = f"/download-video/{output_filename}"
|
84 |
-
|
85 |
-
return jsonify({
|
86 |
-
"success": True,
|
87 |
-
"model": model_type,
|
88 |
-
"video_url": video_url,
|
89 |
-
"filename": output_filename
|
90 |
-
})
|
91 |
-
|
92 |
-
except Exception as e:
|
93 |
-
return jsonify({
|
94 |
-
"success": False,
|
95 |
-
"error": str(e)
|
96 |
-
}), 500
|
97 |
-
|
98 |
-
|
99 |
-
# Endpoint to download the generated video
|
100 |
-
@app.route('/download-video/<filename>', methods=['GET'])
|
101 |
-
def download_video(filename):
|
102 |
-
try:
|
103 |
-
return send_from_directory("output", filename, as_attachment=True)
|
104 |
-
except FileNotFoundError:
|
105 |
-
return jsonify({"error": "Video file not found"}), 404
|
106 |
-
|
107 |
-
|
108 |
-
if __name__ == '__main__':
|
109 |
-
app.run(host='0.0.0.0', port=
|
110 |
-
|
|
|
1 |
+
from flask import Flask, request, jsonify, send_from_directory
|
2 |
+
from modelscope.pipelines import pipeline
|
3 |
+
from modelscope.utils.constant import Tasks
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
+
import torch
|
6 |
+
import imageio
|
7 |
+
import uuid
|
8 |
+
import os
|
9 |
+
|
10 |
+
app = Flask(__name__)
|
11 |
+
|
12 |
+
# Load models once
|
13 |
+
modelscope_model = pipeline(Tasks.text_to_video_synthesis, model='damo-vilab/modelscope-text-to-video-synthesis')
|
14 |
+
zeroscope_model = DiffusionPipeline.from_pretrained(
|
15 |
+
"cerspense/zeroscope_v2_576w",
|
16 |
+
torch_dtype=torch.float16
|
17 |
+
).to("cuda")
|
18 |
+
|
19 |
+
# Output directory (for temporary files)
|
20 |
+
os.makedirs("output", exist_ok=True)
|
21 |
+
|
22 |
+
# Serve the generated video dynamically (no permanent storage)
|
23 |
+
@app.route('/generate-video', methods=['POST'])
|
24 |
+
def generate_video():
|
25 |
+
data = request.get_json()
|
26 |
+
|
27 |
+
model_type = data.get("model", "").lower()
|
28 |
+
if not model_type:
|
29 |
+
return jsonify({"error": "Model is required: 'modelscope' or 'zeroscope'"}), 400
|
30 |
+
|
31 |
+
params = data.get("params", {})
|
32 |
+
prompt = params.get("prompt")
|
33 |
+
if not prompt:
|
34 |
+
return jsonify({"error": "Prompt is required in 'params'"}), 400
|
35 |
+
|
36 |
+
# Common settings
|
37 |
+
seed = params.get("seed", 42)
|
38 |
+
output_filename = f"{uuid.uuid4().hex}.mp4"
|
39 |
+
output_path = os.path.join("output", output_filename)
|
40 |
+
|
41 |
+
try:
|
42 |
+
if model_type == "modelscope":
|
43 |
+
# Extract ModelScope-specific parameters
|
44 |
+
result = modelscope_model({
|
45 |
+
"text": prompt,
|
46 |
+
"output_path": output_path,
|
47 |
+
"seed": seed,
|
48 |
+
"fps": params.get("fps", 8),
|
49 |
+
"num_frames": params.get("num_frames", 16),
|
50 |
+
"batch_size": params.get("batch_size", 1),
|
51 |
+
"decode_audio": params.get("decode_audio", False),
|
52 |
+
"resolution": params.get("resolution", "512x512")
|
53 |
+
})
|
54 |
+
video_path = result["output_path"]
|
55 |
+
|
56 |
+
elif model_type == "zeroscope":
|
57 |
+
# Extract Zeroscope-specific parameters
|
58 |
+
inference_steps = params.get("num_inference_steps", 25)
|
59 |
+
height = params.get("height", 320)
|
60 |
+
width = params.get("width", 576)
|
61 |
+
fps = params.get("fps", 8)
|
62 |
+
|
63 |
+
generator = torch.manual_seed(seed)
|
64 |
+
|
65 |
+
with torch.autocast("cuda"):
|
66 |
+
output = zeroscope_model(
|
67 |
+
prompt,
|
68 |
+
num_inference_steps=inference_steps,
|
69 |
+
height=height,
|
70 |
+
width=width,
|
71 |
+
generator=generator
|
72 |
+
)
|
73 |
+
video_frames = output.frames
|
74 |
+
|
75 |
+
# Save as video
|
76 |
+
imageio.mimsave(output_path, video_frames, fps=fps)
|
77 |
+
video_path = output_path
|
78 |
+
|
79 |
+
else:
|
80 |
+
return jsonify({"error": f"Unsupported model type: {model_type}"}), 400
|
81 |
+
|
82 |
+
# Return a URL to the generated video file
|
83 |
+
video_url = f"/download-video/{output_filename}"
|
84 |
+
|
85 |
+
return jsonify({
|
86 |
+
"success": True,
|
87 |
+
"model": model_type,
|
88 |
+
"video_url": video_url,
|
89 |
+
"filename": output_filename
|
90 |
+
})
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
return jsonify({
|
94 |
+
"success": False,
|
95 |
+
"error": str(e)
|
96 |
+
}), 500
|
97 |
+
|
98 |
+
|
99 |
+
# Endpoint to download the generated video
|
100 |
+
@app.route('/download-video/<filename>', methods=['GET'])
|
101 |
+
def download_video(filename):
|
102 |
+
try:
|
103 |
+
return send_from_directory("output", filename, as_attachment=True)
|
104 |
+
except FileNotFoundError:
|
105 |
+
return jsonify({"error": "Video file not found"}), 404
|
106 |
+
|
107 |
+
|
108 |
+
if __name__ == '__main__':
|
109 |
+
app.run(host='0.0.0.0', port=5000)
|
110 |
+
|