Ankit8544 commited on
Commit
0f521ae
·
verified ·
1 Parent(s): 20df934

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -409
README.md DELETED
@@ -1,409 +0,0 @@
1
- ---
2
- title: Wan2.1 API
3
- emoji: 📚
4
- colorFrom: blue
5
- colorTo: red
6
- sdk: docker
7
- pinned: false
8
- short_description: Flask API for generating video from text using Wan2.1-T2V-1.
9
- ---
10
-
11
- # Wan2.1
12
-
13
- <p align="center">
14
- <img src="assets/logo.png" width="400"/>
15
- <p>
16
-
17
- <p align="center">
18
- 💜 <a href=""><b>Wan</b></a> &nbsp&nbsp | &nbsp&nbsp 🖥️ <a href="https://github.com/Wan-Video/Wan2.1">GitHub</a> &nbsp&nbsp | &nbsp&nbsp🤗 <a href="https://huggingface.co/Wan-AI/">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/organization/Wan-AI">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="">Paper (Coming soon)</a> &nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://wanxai.com">Blog</a> &nbsp&nbsp | &nbsp&nbsp💬 <a href="https://gw.alicdn.com/imgextra/i2/O1CN01tqjWFi1ByuyehkTSB_!!6000000000015-0-tps-611-1279.jpg">WeChat Group</a>&nbsp&nbsp | &nbsp&nbsp 📖 <a href="https://discord.gg/p5XbdQV7">Discord</a>&nbsp&nbsp
19
- <br>
20
-
21
- -----
22
-
23
- [**Wan: Open and Advanced Large-Scale Video Generative Models**]("#") <be>
24
-
25
- In this repository, we present **Wan2.1**, a comprehensive and open suite of video foundation models that pushes the boundaries of video generation. **Wan2.1** offers these key features:
26
- - 👍 **SOTA Performance**: **Wan2.1** consistently outperforms existing open-source models and state-of-the-art commercial solutions across multiple benchmarks.
27
- - 👍 **Supports Consumer-grade GPUs**: The T2V-1.3B model requires only 8.19 GB VRAM, making it compatible with almost all consumer-grade GPUs. It can generate a 5-second 480P video on an RTX 4090 in about 4 minutes (without optimization techniques like quantization). Its performance is even comparable to some closed-source models.
28
- - 👍 **Multiple Tasks**: **Wan2.1** excels in Text-to-Video, Image-to-Video, Video Editing, Text-to-Image, and Video-to-Audio, advancing the field of video generation.
29
- - 👍 **Visual Text Generation**: **Wan2.1** is the first video model capable of generating both Chinese and English text, featuring robust text generation that enhances its practical applications.
30
- - 👍 **Powerful Video VAE**: **Wan-VAE** delivers exceptional efficiency and performance, encoding and decoding 1080P videos of any length while preserving temporal information, making it an ideal foundation for video and image generation.
31
-
32
- ## Video Demos
33
-
34
- <div align="center">
35
- <video width="80%" controls>
36
- <source src="https://cloud.video.taobao.com/vod/Jth64Y7wNoPcJki_Bo1ZJTDBvNjsgjlVKsNs05Fqfps.mp4" type="video/mp4">
37
- Your browser does not support the video tag.
38
- </video>
39
- </div>
40
-
41
- ## 🔥 Latest News!!
42
-
43
- * Feb 25, 2025: 👋 We've released the inference code and weights of Wan2.1.
44
-
45
-
46
- ## 📑 Todo List
47
- - Wan2.1 Text-to-Video
48
- - [x] Multi-GPU Inference code of the 14B and 1.3B models
49
- - [x] Checkpoints of the 14B and 1.3B models
50
- - [x] Gradio demo
51
- - [ ] Diffusers integration
52
- - [ ] ComfyUI integration
53
- - Wan2.1 Image-to-Video
54
- - [x] Multi-GPU Inference code of the 14B model
55
- - [x] Checkpoints of the 14B model
56
- - [x] Gradio demo
57
- - [ ] Diffusers integration
58
- - [ ] ComfyUI integration
59
-
60
-
61
- ## Quickstart
62
-
63
- #### Installation
64
- Clone the repo:
65
- ```
66
- git clone https://github.com/Wan-Video/Wan2.1.git
67
- cd Wan2.1
68
- ```
69
-
70
- Install dependencies:
71
- ```
72
- # Ensure torch >= 2.4.0
73
- pip install -r requirements.txt
74
- ```
75
-
76
-
77
- #### Model Download
78
-
79
- | Models | Download Link | Notes |
80
- | --------------|-------------------------------------------------------------------------------|-------------------------------|
81
- | T2V-14B | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-T2V-14B) 🤖 [ModelScope](https://www.modelscope.cn/models/Wan-AI/Wan2.1-T2V-14B) | Supports both 480P and 720P
82
- | I2V-14B-720P | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P) 🤖 [ModelScope](https://www.modelscope.cn/models/Wan-AI/Wan2.1-I2V-14B-720P) | Supports 720P
83
- | I2V-14B-480P | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-480P) 🤖 [ModelScope](https://www.modelscope.cn/models/Wan-AI/Wan2.1-I2V-14B-480P) | Supports 480P
84
- | T2V-1.3B | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B) 🤖 [ModelScope](https://www.modelscope.cn/models/Wan-AI/Wan2.1-T2V-1.3B) | Supports 480P
85
-
86
- > 💡Note: The 1.3B model is capable of generating videos at 720P resolution. However, due to limited training at this resolution, the results are generally less stable compared to 480P. For optimal performance, we recommend using 480P resolution.
87
-
88
-
89
- Download models using huggingface-cli:
90
- ```
91
- pip install "huggingface_hub[cli]"
92
- huggingface-cli download Wan-AI/Wan2.1-T2V-14B --local-dir ./Wan2.1-T2V-14B
93
- ```
94
-
95
- #### Run Text-to-Video Generation
96
-
97
- This repository supports two Text-to-Video models (1.3B and 14B) and two resolutions (480P and 720P). The parameters and configurations for these models are as follows:
98
-
99
- <table>
100
- <thead>
101
- <tr>
102
- <th rowspan="2">Task</th>
103
- <th colspan="2">Resolution</th>
104
- <th rowspan="2">Model</th>
105
- </tr>
106
- <tr>
107
- <th>480P</th>
108
- <th>720P</th>
109
- </tr>
110
- </thead>
111
- <tbody>
112
- <tr>
113
- <td>t2v-14B</td>
114
- <td style="color: green;">✔️</td>
115
- <td style="color: green;">✔️</td>
116
- <td>Wan2.1-T2V-14B</td>
117
- </tr>
118
- <tr>
119
- <td>t2v-1.3B</td>
120
- <td style="color: green;">✔️</td>
121
- <td style="color: red;">❌</td>
122
- <td>Wan2.1-T2V-1.3B</td>
123
- </tr>
124
- </tbody>
125
- </table>
126
-
127
-
128
- ##### (1) Without Prompt Extention
129
-
130
- To facilitate implementation, we will start with a basic version of the inference process that skips the [prompt extension](#2-using-prompt-extention) step.
131
-
132
- - Single-GPU inference
133
-
134
- ```
135
- python generate.py --task t2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-T2V-14B --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
136
- ```
137
-
138
- If you encounter OOM (Out-of-Memory) issues, you can use the `--offload_model True` and `--t5_cpu` options to reduce GPU memory usage. For example, on an RTX 4090 GPU:
139
-
140
- ```
141
- python generate.py --task t2v-1.3B --size 832*480 --ckpt_dir ./Wan2.1-T2V-1.3B --offload_model True --t5_cpu --sample_shift 8 --sample_guide_scale 6 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
142
- ```
143
-
144
- > 💡Note: If you are using the `T2V-1.3B` model, we recommend setting the parameter `--sample_guide_scale 6`. The `--sample_shift parameter` can be adjusted within the range of 8 to 12 based on the performance.
145
-
146
-
147
- - Multi-GPU inference using FSDP + xDiT USP
148
-
149
- ```
150
- pip install "xfuser>=0.4.1"
151
- torchrun --nproc_per_node=8 generate.py --task t2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-T2V-14B --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
152
- ```
153
-
154
-
155
- ##### (2) Using Prompt Extention
156
-
157
- Extending the prompts can effectively enrich the details in the generated videos, further enhancing the video quality. Therefore, we recommend enabling prompt extension. We provide the following two methods for prompt extension:
158
-
159
- - Use the Dashscope API for extension.
160
- - Apply for a `dashscope.api_key` in advance ([EN](https://www.alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen) | [CN](https://help.aliyun.com/zh/model-studio/getting-started/first-api-call-to-qwen)).
161
- - Configure the environment variable `DASH_API_KEY` to specify the Dashscope API key. For users of Alibaba Cloud's international site, you also need to set the environment variable `DASH_API_URL` to 'https://dashscope-intl.aliyuncs.com/api/v1'. For more detailed instructions, please refer to the [dashscope document](https://www.alibabacloud.com/help/en/model-studio/developer-reference/use-qwen-by-calling-api?spm=a2c63.p38356.0.i1).
162
- - Use the `qwen-plus` model for text-to-video tasks and `qwen-vl-max` for image-to-video tasks.
163
- - You can modify the model used for extension with the parameter `--prompt_extend_model`. For example:
164
- ```
165
- DASH_API_KEY=your_key python generate.py --task t2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-T2V-14B --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage" --use_prompt_extend --prompt_extend_method 'dashscope' --prompt_extend_target_lang 'ch'
166
- ```
167
-
168
- - Using a local model for extension.
169
-
170
- - By default, the Qwen model on HuggingFace is used for this extension. Users can choose Qwen models or other models based on the available GPU memory size.
171
- - For text-to-video tasks, you can use models like `Qwen/Qwen2.5-14B-Instruct`, `Qwen/Qwen2.5-7B-Instruct` and `Qwen/Qwen2.5-3B-Instruct`.
172
- - For image-to-video tasks, you can use models like `Qwen/Qwen2.5-VL-7B-Instruct` and `Qwen/Qwen2.5-VL-3B-Instruct`.
173
- - Larger models generally provide better extension results but require more GPU memory.
174
- - You can modify the model used for extension with the parameter `--prompt_extend_model` , allowing you to specify either a local model path or a Hugging Face model. For example:
175
-
176
- ```
177
- python generate.py --task t2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-T2V-14B --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage" --use_prompt_extend --prompt_extend_method 'local_qwen' --prompt_extend_target_lang 'ch'
178
- ```
179
-
180
- ##### (3) Runing local gradio
181
-
182
- ```
183
- cd gradio
184
- # if one uses dashscope’s API for prompt extension
185
- DASH_API_KEY=your_key python t2v_14B_singleGPU.py --prompt_extend_method 'dashscope' --ckpt_dir ./Wan2.1-T2V-14B
186
-
187
- # if one uses a local model for prompt extension
188
- python t2v_14B_singleGPU.py --prompt_extend_method 'local_qwen' --ckpt_dir ./Wan2.1-T2V-14B
189
- ```
190
-
191
-
192
- #### Run Image-to-Video Generation
193
-
194
- Similar to Text-to-Video, Image-to-Video is also divided into processes with and without the prompt extension step. The specific parameters and their corresponding settings are as follows:
195
- <table>
196
- <thead>
197
- <tr>
198
- <th rowspan="2">Task</th>
199
- <th colspan="2">Resolution</th>
200
- <th rowspan="2">Model</th>
201
- </tr>
202
- <tr>
203
- <th>480P</th>
204
- <th>720P</th>
205
- </tr>
206
- </thead>
207
- <tbody>
208
- <tr>
209
- <td>i2v-14B</td>
210
- <td style="color: green;">❌</td>
211
- <td style="color: green;">✔️</td>
212
- <td>Wan2.1-I2V-14B-720P</td>
213
- </tr>
214
- <tr>
215
- <td>i2v-14B</td>
216
- <td style="color: green;">✔️</td>
217
- <td style="color: red;">❌</td>
218
- <td>Wan2.1-T2V-14B-480P</td>
219
- </tr>
220
- </tbody>
221
- </table>
222
-
223
-
224
- ##### (1) Without Prompt Extention
225
-
226
- - Single-GPU inference
227
- ```
228
- python generate.py --task i2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-I2V-14B-720P --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
229
- ```
230
-
231
- > 💡For the Image-to-Video task, the `size` parameter represents the area of the generated video, with the aspect ratio following that of the original input image.
232
-
233
-
234
- - Multi-GPU inference using FSDP + xDiT USP
235
-
236
- ```
237
- pip install "xfuser>=0.4.1"
238
- torchrun --nproc_per_node=8 generate.py --task i2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-I2V-14B-720P --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
239
- ```
240
-
241
- ##### (2) Using Prompt Extention
242
-
243
-
244
- The process of prompt extension can be referenced [here](#2-using-prompt-extention).
245
-
246
- Run with local prompt extention using `Qwen/Qwen2.5-VL-7B-Instruct`:
247
- ```
248
- python generate.py --task i2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-I2V-14B-720P --image examples/i2v_input.JPG --use_prompt_extend --prompt_extend_model Qwen/Qwen2.5-VL-7B-Instruct --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
249
- ```
250
-
251
- Run with remote prompt extention using `dashscope`:
252
- ```
253
- DASH_API_KEY=your_key python generate.py --task i2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-I2V-14B-720P --image examples/i2v_input.JPG --use_prompt_extend --prompt_extend_method 'dashscope' --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
254
- ```
255
-
256
- ##### (3) Runing local gradio
257
-
258
- ```
259
- cd gradio
260
- # if one only uses 480P model in gradio
261
- DASH_API_KEY=your_key python i2v_14B_singleGPU.py --prompt_extend_method 'dashscope' --ckpt_dir_480p ./Wan2.1-I2V-14B-480P
262
-
263
- # if one only uses 720P model in gradio
264
- DASH_API_KEY=your_key python i2v_14B_singleGPU.py --prompt_extend_method 'dashscope' --ckpt_dir_720p ./Wan2.1-I2V-14B-720P
265
-
266
- # if one uses both 480P and 720P models in gradio
267
- DASH_API_KEY=your_key python i2v_14B_singleGPU.py --prompt_extend_method 'dashscope' --ckpt_dir_480p ./Wan2.1-I2V-14B-480P --ckpt_dir_720p ./Wan2.1-I2V-14B-720P
268
- ```
269
-
270
-
271
- #### Run Text-to-Image Generation
272
-
273
- Wan2.1 is a unified model for both image and video generation. Since it was trained on both types of data, it can also generate images. The command for generating images is similar to video generation, as follows:
274
-
275
- ##### (1) Without Prompt Extention
276
-
277
- - Single-GPU inference
278
- ```
279
- python generate.py --task t2i-14B --size 1024*1024 --ckpt_dir ./Wan2.1-T2V-14B --prompt '一个朴素端庄的美人'
280
- ```
281
-
282
- - Multi-GPU inference using FSDP + xDiT USP
283
-
284
- ```
285
- torchrun --nproc_per_node=8 generate.py --dit_fsdp --t5_fsdp --ulysses_size 8 --base_seed 0 --frame_num 1 --task t2i-14B --size 1024*1024 --prompt '一个朴素端庄的美人' --ckpt_dir ./Wan2.1-T2V-14B
286
- ```
287
-
288
- ##### (2) With Prompt Extention
289
-
290
- - Single-GPU inference
291
- ```
292
- python generate.py --task t2i-14B --size 1024*1024 --ckpt_dir ./Wan2.1-T2V-14B --prompt '一个朴素端庄的美人' --use_prompt_extend
293
- ```
294
-
295
- - Multi-GPU inference using FSDP + xDiT USP
296
- ```
297
- torchrun --nproc_per_node=8 generate.py --dit_fsdp --t5_fsdp --ulysses_size 8 --base_seed 0 --frame_num 1 --task t2i-14B --size 1024*1024 --ckpt_dir ./Wan2.1-T2V-14B --prompt '一个朴素端庄的美人' --use_prompt_extend
298
- ```
299
-
300
-
301
- ## Manual Evaluation
302
-
303
- ##### (1) Text-to-Video Evaluation
304
-
305
- Through manual evaluation, the results generated after prompt extension are superior to those from both closed-source and open-source models.
306
-
307
- <div align="center">
308
- <img src="assets/t2v_res.jpg" alt="" style="width: 80%;" />
309
- </div>
310
-
311
-
312
- ##### (2) Image-to-Video Evaluation
313
-
314
- We also conducted extensive manual evaluations to evaluate the performance of the Image-to-Video model, and the results are presented in the table below. The results clearly indicate that **Wan2.1** outperforms both closed-source and open-source models.
315
-
316
- <div align="center">
317
- <img src="assets/i2v_res.png" alt="" style="width: 80%;" />
318
- </div>
319
-
320
-
321
- ## Computational Efficiency on Different GPUs
322
-
323
- We test the computational efficiency of different **Wan2.1** models on different GPUs in the following table. The results are presented in the format: **Total time (s) / peak GPU memory (GB)**.
324
-
325
-
326
- <div align="center">
327
- <img src="assets/comp_effic.png" alt="" style="width: 80%;" />
328
- </div>
329
-
330
- > The parameter settings for the tests presented in this table are as follows:
331
- > (1) For the 1.3B model on 8 GPUs, set `--ring_size 8` and `--ulysses_size 1`;
332
- > (2) For the 14B model on 1 GPU, use `--offload_model True`;
333
- > (3) For the 1.3B model on a single 4090 GPU, set `--offload_model True --t5_cpu`;
334
- > (4) For all testings, no prompt extension was applied, meaning `--use_prompt_extend` was not enabled.
335
-
336
-
337
- ## Community Contributions
338
- - [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) provides more support for Wan, including video-to-video, FP8 quantization, VRAM optimization, LoRA training, and more. Please refer to [their examples](https://github.com/modelscope/DiffSynth-Studio/tree/main/examples/wanvideo).
339
-
340
- -------
341
-
342
- ## Introduction of Wan2.1
343
-
344
- **Wan2.1** is designed on the mainstream diffusion transformer paradigm, achieving significant advancements in generative capabilities through a series of innovations. These include our novel spatio-temporal variational autoencoder (VAE), scalable training strategies, large-scale data construction, and automated evaluation metrics. Collectively, these contributions enhance the model’s performance and versatility.
345
-
346
-
347
- ##### (1) 3D Variational Autoencoders
348
- We propose a novel 3D causal VAE architecture, termed **Wan-VAE** specifically designed for video generation. By combining multiple strategies, we improve spatio-temporal compression, reduce memory usage, and ensure temporal causality. **Wan-VAE** demonstrates significant advantages in performance efficiency compared to other open-source VAEs. Furthermore, our **Wan-VAE** can encode and decode unlimited-length 1080P videos without losing historical temporal information, making it particularly well-suited for video generation tasks.
349
-
350
-
351
- <div align="center">
352
- <img src="assets/video_vae_res.jpg" alt="" style="width: 80%;" />
353
- </div>
354
-
355
-
356
- ##### (2) Video Diffusion DiT
357
-
358
- **Wan2.1** is designed using the Flow Matching framework within the paradigm of mainstream Diffusion Transformers. Our model's architecture uses the T5 Encoder to encode multilingual text input, with cross-attention in each transformer block embedding the text into the model structure. Additionally, we employ an MLP with a Linear layer and a SiLU layer to process the input time embeddings and predict six modulation parameters individually. This MLP is shared across all transformer blocks, with each block learning a distinct set of biases. Our experimental findings reveal a significant performance improvement with this approach at the same parameter scale.
359
-
360
- <div align="center">
361
- <img src="assets/video_dit_arch.jpg" alt="" style="width: 80%;" />
362
- </div>
363
-
364
-
365
- | Model | Dimension | Input Dimension | Output Dimension | Feedforward Dimension | Frequency Dimension | Number of Heads | Number of Layers |
366
- |--------|-----------|-----------------|------------------|-----------------------|---------------------|-----------------|------------------|
367
- | 1.3B | 1536 | 16 | 16 | 8960 | 256 | 12 | 30 |
368
- | 14B | 5120 | 16 | 16 | 13824 | 256 | 40 | 40 |
369
-
370
-
371
-
372
- ##### Data
373
-
374
- We curated and deduplicated a candidate dataset comprising a vast amount of image and video data. During the data curation process, we designed a four-step data cleaning process, focusing on fundamental dimensions, visual quality and motion quality. Through the robust data processing pipeline, we can easily obtain high-quality, diverse, and large-scale training sets of images and videos.
375
-
376
- ![figure1](assets/data_for_diff_stage.jpg "figure1")
377
-
378
-
379
- ##### Comparisons to SOTA
380
- We compared **Wan2.1** with leading open-source and closed-source models to evaluate the performace. Using our carefully designed set of 1,035 internal prompts, we tested across 14 major dimensions and 26 sub-dimensions. We then compute the total score by performing a weighted calculation on the scores of each dimension, utilizing weights derived from human preferences in the matching process. The detailed results are shown in the table below. These results demonstrate our model's superior performance compared to both open-source and closed-source models.
381
-
382
- ![figure1](assets/vben_vs_sota.png "figure1")
383
-
384
-
385
- ## Citation
386
- If you find our work helpful, please cite us.
387
-
388
- ```
389
- @article{wan2.1,
390
- title = {Wan: Open and Advanced Large-Scale Video Generative Models},
391
- author = {Wan Team},
392
- journal = {},
393
- year = {2025}
394
- }
395
- ```
396
-
397
- ## License Agreement
398
- The models in this repository are licensed under the Apache 2.0 License. We claim no rights over the your generate contents, granting you the freedom to use them while ensuring that your usage complies with the provisions of this license. You are fully accountable for your use of the models, which must not involve sharing any content that violates applicable laws, causes harm to individuals or groups, disseminates personal information intended for harm, spreads misinformation, or targets vulnerable populations. For a complete list of restrictions and details regarding your rights, please refer to the full text of the [license](LICENSE.txt).
399
-
400
-
401
- ## Acknowledgements
402
-
403
- We would like to thank the contributors to the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium), [Qwen](https://huggingface.co/Qwen), [umt5-xxl](https://huggingface.co/google/umt5-xxl), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research.
404
-
405
-
406
-
407
- ## Contact Us
408
- If you would like to leave a message to our research or product teams, feel free to join our [Discord](https://discord.gg/p5XbdQV7) or [WeChat groups](https://gw.alicdn.com/imgextra/i2/O1CN01tqjWFi1ByuyehkTSB_!!6000000000015-0-tps-611-1279.jpg)!
409
- >>>>>>> 65386b2 (init upload)