Spaces:
Running
Running
import gradio as gr | |
import torch | |
import ftfy | |
from uuid import uuid4 | |
from diffusers import WanPipeline, AutoencoderKLWan | |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Running on {device}...") | |
# Load model | |
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" | |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) | |
scheduler = UniPCMultistepScheduler( | |
prediction_type='flow_prediction', | |
use_flow_sigmas=True, | |
num_train_timesteps=1000, | |
flow_shift=5.0 | |
) | |
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) | |
pipe.scheduler = scheduler | |
pipe.to(device) | |
print("Model loaded successfully.") | |
def make_divisible_by_16(x): | |
return int(x) - int(x) % 16 | |
def generate_video(prompt, negative_prompt="", height=480, width=832, num_frames=81, guidance_scale=5.0): | |
try: | |
print(f"Generating video with prompt: {prompt}") | |
if not prompt: | |
raise ValueError("Prompt must be provided.") | |
# Validate and adjust height/width | |
height = make_divisible_by_16(int(height)) | |
width = make_divisible_by_16(int(width)) | |
num_frames = int(num_frames) | |
guidance_scale = float(guidance_scale) | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
guidance_scale=guidance_scale, | |
).frames[0] | |
output_path = f"{uuid4()}.mp4" | |
export_to_video(output, output_path, fps=16) | |
print(f"Video generated: {output_path}") | |
return output_path | |
except Exception as e: | |
print(f"Error during video generation: {e}") | |
return None | |
iface = gr.Interface( | |
fn=generate_video, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Describe your scene..."), | |
gr.Textbox(label="Negative Prompt", value=""), | |
gr.Number(label="Height", value=480), | |
gr.Number(label="Width", value=832), | |
gr.Number(label="Number of Frames", value=81), | |
gr.Number(label="Guidance Scale", value=5.0), | |
], | |
outputs=gr.File(label="Generated Video") | |
) | |
# Launch Gradio app in API mode | |
try: | |
iface.launch(share=True) | |
except Exception as e: | |
print(f"Error launching Gradio app: {e}") | |