Spaces:
Running
Running
from flask import Flask, request, jsonify, send_file | |
import torch | |
from diffusers.utils import export_to_video | |
from diffusers import AutoencoderKLWan, WanPipeline | |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler | |
import os | |
from uuid import uuid4 | |
app = Flask(__name__) | |
def index(): | |
return jsonify({"message": "Welcome to the Wan2.1 Video Generation API!", "status": "running"}) | |
# Load the model once at startup | |
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" | |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) | |
scheduler = UniPCMultistepScheduler( | |
prediction_type='flow_prediction', | |
use_flow_sigmas=True, | |
num_train_timesteps=1000, | |
flow_shift=5.0 | |
) | |
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) | |
pipe.scheduler = scheduler | |
pipe.to("cuda") | |
def generate_video(): | |
data = request.json | |
prompt = data.get('prompt') | |
negative_prompt = data.get('negative_prompt', '') | |
height = data.get('height', 720) | |
width = data.get('width', 1280) | |
num_frames = data.get('num_frames', 81) | |
guidance_scale = data.get('guidance_scale', 5.0) | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
guidance_scale=guidance_scale, | |
).frames[0] | |
output_filename = f"{uuid4()}.mp4" | |
output_path = os.path.join("outputs", output_filename) | |
os.makedirs("outputs", exist_ok=True) | |
export_to_video(output, output_path, fps=16) | |
return send_file(output_path, mimetype='video/mp4') | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=7860) | |