Wan2.1-API / app.py
Ankit8544's picture
Update app.py
b45529f verified
raw
history blame
1.87 kB
import gradio as gr
import torch
from diffusers.utils import export_to_video
from diffusers import AutoencoderKLWan, WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
import os
from uuid import uuid4
# Load model on startup
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
scheduler = UniPCMultistepScheduler(
prediction_type='flow_prediction',
use_flow_sigmas=True,
num_train_timesteps=1000,
flow_shift=5.0
)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
pipe.scheduler = scheduler
pipe.to("cuda")
# Define the generation function
def generate_video(prompt, negative_prompt="", height=720, width=1280, num_frames=81, guidance_scale=5.0):
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=guidance_scale,
).frames[0]
output_filename = f"{uuid4()}.mp4"
output_path = os.path.join("outputs", output_filename)
os.makedirs("outputs", exist_ok=True)
export_to_video(output, output_path, fps=16)
return output_path # Gradio returns this as downloadable file/video
# Gradio Interface
iface = gr.Interface(
fn=generate_video,
inputs=[
gr.Textbox(label="Prompt"),
gr.Textbox(label="Negative Prompt", value=""),
gr.Number(label="Height", value=720),
gr.Number(label="Width", value=1280),
gr.Number(label="Number of Frames", value=81),
gr.Number(label="Guidance Scale", value=5.0)
],
outputs=gr.File(label="Generated Video"),
title="Wan2.1 Video Generator",
description="Generate realistic videos from text prompts using the Wan2.1 T2V model."
)
iface.launch()