Spaces:
Running
Running
import gradio as gr | |
import torch | |
from diffusers.utils import export_to_video | |
from diffusers import AutoencoderKLWan, WanPipeline | |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler | |
import os | |
from uuid import uuid4 | |
# Load model on startup | |
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" | |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) | |
scheduler = UniPCMultistepScheduler( | |
prediction_type='flow_prediction', | |
use_flow_sigmas=True, | |
num_train_timesteps=1000, | |
flow_shift=5.0 | |
) | |
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) | |
pipe.scheduler = scheduler | |
pipe.to("cuda") | |
# Define the generation function | |
def generate_video(prompt, negative_prompt="", height=720, width=1280, num_frames=81, guidance_scale=5.0): | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
guidance_scale=guidance_scale, | |
).frames[0] | |
output_filename = f"{uuid4()}.mp4" | |
output_path = os.path.join("outputs", output_filename) | |
os.makedirs("outputs", exist_ok=True) | |
export_to_video(output, output_path, fps=16) | |
return output_path # Gradio returns this as downloadable file/video | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=generate_video, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Textbox(label="Negative Prompt", value=""), | |
gr.Number(label="Height", value=720), | |
gr.Number(label="Width", value=1280), | |
gr.Number(label="Number of Frames", value=81), | |
gr.Number(label="Guidance Scale", value=5.0) | |
], | |
outputs=gr.File(label="Generated Video"), | |
title="Wan2.1 Video Generator", | |
description="Generate realistic videos from text prompts using the Wan2.1 T2V model." | |
) | |
iface.launch() | |