Spaces:
Running
Running
Commit
·
d709b4a
1
Parent(s):
0216b15
use spaces gpu
Browse files
app.py
CHANGED
@@ -114,6 +114,7 @@ def load_model():
|
|
114 |
generator_mini = pipeline(task="text-generation", model=ankerbot_model, tokenizer=ankerbot_tokenizer, torch_dtype=torch.float16, trust_remote_code=True) # True for flash-attn2 else False
|
115 |
|
116 |
load_model()
|
|
|
117 |
def generate_response(query, context, prompts, max_tokens, temperature, top_p):
|
118 |
system_message_support = f"""<|im_start|>system
|
119 |
Rolle: Du bist der KI-Assistent für Kundenservice, der im Namen des Unternehmens und Gewürzmanufaktur Ankerkraut handelt und Antworten aus der Ich-Perspektive, basierend auf den bereitgestellten Informationen gibt.
|
@@ -175,12 +176,12 @@ def generate_response(query, context, prompts, max_tokens, temperature, top_p):
|
|
175 |
response = response.split("assistant").pop().strip()
|
176 |
|
177 |
return response
|
178 |
-
|
179 |
def get_embedding(text):
|
180 |
"""Generate an embedding using Sentence Transformers."""
|
181 |
embedding = model.encode(text, normalize_embeddings=True) # Normalize for cosine similarity
|
182 |
return embedding
|
183 |
-
|
184 |
def search_qdrant_with_context(query_text, collection_name, top_k=3):
|
185 |
"""Search Qdrant using a GPT-2 generated embedding."""
|
186 |
query_embedding = get_embedding(query_text) # Convert prompt to embedding
|
@@ -197,6 +198,7 @@ def search_qdrant_with_context(query_text, collection_name, top_k=3):
|
|
197 |
print("Retrieved Text ", retrieved_texts)
|
198 |
|
199 |
return retrieved_texts
|
|
|
200 |
def respond(
|
201 |
query,
|
202 |
history: list[tuple[str, str]],
|
|
|
114 |
generator_mini = pipeline(task="text-generation", model=ankerbot_model, tokenizer=ankerbot_tokenizer, torch_dtype=torch.float16, trust_remote_code=True) # True for flash-attn2 else False
|
115 |
|
116 |
load_model()
|
117 |
+
@spaces.GPU
|
118 |
def generate_response(query, context, prompts, max_tokens, temperature, top_p):
|
119 |
system_message_support = f"""<|im_start|>system
|
120 |
Rolle: Du bist der KI-Assistent für Kundenservice, der im Namen des Unternehmens und Gewürzmanufaktur Ankerkraut handelt und Antworten aus der Ich-Perspektive, basierend auf den bereitgestellten Informationen gibt.
|
|
|
176 |
response = response.split("assistant").pop().strip()
|
177 |
|
178 |
return response
|
179 |
+
@spaces.GPU
|
180 |
def get_embedding(text):
|
181 |
"""Generate an embedding using Sentence Transformers."""
|
182 |
embedding = model.encode(text, normalize_embeddings=True) # Normalize for cosine similarity
|
183 |
return embedding
|
184 |
+
@spaces.GPU
|
185 |
def search_qdrant_with_context(query_text, collection_name, top_k=3):
|
186 |
"""Search Qdrant using a GPT-2 generated embedding."""
|
187 |
query_embedding = get_embedding(query_text) # Convert prompt to embedding
|
|
|
198 |
print("Retrieved Text ", retrieved_texts)
|
199 |
|
200 |
return retrieved_texts
|
201 |
+
@spaces.GPU
|
202 |
def respond(
|
203 |
query,
|
204 |
history: list[tuple[str, str]],
|