Spaces:
Running
Running
Added files via upload
Browse files- model.py +279 -0
- requirements.txt +7 -0
- resnet.py +96 -0
model.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchvision
|
5 |
+
|
6 |
+
from resnet import Resnet18
|
7 |
+
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
8 |
+
|
9 |
+
|
10 |
+
class ConvBNReLU(nn.Module):
|
11 |
+
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs):
|
12 |
+
super(ConvBNReLU, self).__init__()
|
13 |
+
self.conv = nn.Conv2d(in_chan,
|
14 |
+
out_chan,
|
15 |
+
kernel_size = ks,
|
16 |
+
stride = stride,
|
17 |
+
padding = padding,
|
18 |
+
bias = False)
|
19 |
+
self.bn = nn.BatchNorm2d(out_chan)
|
20 |
+
self.init_weight()
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
x = self.conv(x)
|
24 |
+
x = F.relu(self.bn(x))
|
25 |
+
return x
|
26 |
+
|
27 |
+
def init_weight(self):
|
28 |
+
for ly in self.children():
|
29 |
+
if isinstance(ly, nn.Conv2d):
|
30 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
31 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
32 |
+
|
33 |
+
class BiSeNetOutput(nn.Module):
|
34 |
+
def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs):
|
35 |
+
super(BiSeNetOutput, self).__init__()
|
36 |
+
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
|
37 |
+
self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False)
|
38 |
+
self.init_weight()
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
x = self.conv(x)
|
42 |
+
x = self.conv_out(x)
|
43 |
+
return x
|
44 |
+
|
45 |
+
def init_weight(self):
|
46 |
+
for ly in self.children():
|
47 |
+
if isinstance(ly, nn.Conv2d):
|
48 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
49 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
50 |
+
|
51 |
+
def get_params(self):
|
52 |
+
wd_params, nowd_params = [], []
|
53 |
+
for name, module in self.named_modules():
|
54 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
55 |
+
wd_params.append(module.weight)
|
56 |
+
if not module.bias is None:
|
57 |
+
nowd_params.append(module.bias)
|
58 |
+
elif isinstance(module, nn.BatchNorm2d):
|
59 |
+
nowd_params += list(module.parameters())
|
60 |
+
return wd_params, nowd_params
|
61 |
+
|
62 |
+
|
63 |
+
class AttentionRefinementModule(nn.Module):
|
64 |
+
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
65 |
+
super(AttentionRefinementModule, self).__init__()
|
66 |
+
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
|
67 |
+
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False)
|
68 |
+
self.bn_atten = nn.BatchNorm2d(out_chan)
|
69 |
+
self.sigmoid_atten = nn.Sigmoid()
|
70 |
+
self.init_weight()
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
feat = self.conv(x)
|
74 |
+
atten = F.avg_pool2d(feat, feat.size()[2:])
|
75 |
+
atten = self.conv_atten(atten)
|
76 |
+
atten = self.bn_atten(atten)
|
77 |
+
atten = self.sigmoid_atten(atten)
|
78 |
+
out = torch.mul(feat, atten)
|
79 |
+
return out
|
80 |
+
|
81 |
+
def init_weight(self):
|
82 |
+
for ly in self.children():
|
83 |
+
if isinstance(ly, nn.Conv2d):
|
84 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
85 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
86 |
+
|
87 |
+
|
88 |
+
class ContextPath(nn.Module):
|
89 |
+
def __init__(self, *args, **kwargs):
|
90 |
+
super(ContextPath, self).__init__()
|
91 |
+
self.resnet = Resnet18()
|
92 |
+
self.arm16 = AttentionRefinementModule(256, 128)
|
93 |
+
self.arm32 = AttentionRefinementModule(512, 128)
|
94 |
+
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
95 |
+
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
96 |
+
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
|
97 |
+
|
98 |
+
self.init_weight()
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
H0, W0 = x.size()[2:]
|
102 |
+
feat8, feat16, feat32 = self.resnet(x)
|
103 |
+
H8, W8 = feat8.size()[2:]
|
104 |
+
H16, W16 = feat16.size()[2:]
|
105 |
+
H32, W32 = feat32.size()[2:]
|
106 |
+
|
107 |
+
avg = F.avg_pool2d(feat32, feat32.size()[2:])
|
108 |
+
avg = self.conv_avg(avg)
|
109 |
+
avg_up = F.interpolate(avg, (H32, W32), mode='nearest')
|
110 |
+
|
111 |
+
feat32_arm = self.arm32(feat32)
|
112 |
+
feat32_sum = feat32_arm + avg_up
|
113 |
+
feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest')
|
114 |
+
feat32_up = self.conv_head32(feat32_up)
|
115 |
+
|
116 |
+
feat16_arm = self.arm16(feat16)
|
117 |
+
feat16_sum = feat16_arm + feat32_up
|
118 |
+
feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest')
|
119 |
+
feat16_up = self.conv_head16(feat16_up)
|
120 |
+
|
121 |
+
return feat8, feat16_up, feat32_up # x8, x8, x16
|
122 |
+
|
123 |
+
def init_weight(self):
|
124 |
+
for ly in self.children():
|
125 |
+
if isinstance(ly, nn.Conv2d):
|
126 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
127 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
128 |
+
|
129 |
+
def get_params(self):
|
130 |
+
wd_params, nowd_params = [], []
|
131 |
+
for name, module in self.named_modules():
|
132 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
133 |
+
wd_params.append(module.weight)
|
134 |
+
if not module.bias is None:
|
135 |
+
nowd_params.append(module.bias)
|
136 |
+
elif isinstance(module, nn.BatchNorm2d):
|
137 |
+
nowd_params += list(module.parameters())
|
138 |
+
return wd_params, nowd_params
|
139 |
+
|
140 |
+
|
141 |
+
### This is not used, since I replace this with the resnet feature with the same size
|
142 |
+
class SpatialPath(nn.Module):
|
143 |
+
def __init__(self, *args, **kwargs):
|
144 |
+
super(SpatialPath, self).__init__()
|
145 |
+
self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3)
|
146 |
+
self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
147 |
+
self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
148 |
+
self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0)
|
149 |
+
self.init_weight()
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
feat = self.conv1(x)
|
153 |
+
feat = self.conv2(feat)
|
154 |
+
feat = self.conv3(feat)
|
155 |
+
feat = self.conv_out(feat)
|
156 |
+
return feat
|
157 |
+
|
158 |
+
def init_weight(self):
|
159 |
+
for ly in self.children():
|
160 |
+
if isinstance(ly, nn.Conv2d):
|
161 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
162 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
163 |
+
|
164 |
+
def get_params(self):
|
165 |
+
wd_params, nowd_params = [], []
|
166 |
+
for name, module in self.named_modules():
|
167 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
168 |
+
wd_params.append(module.weight)
|
169 |
+
if not module.bias is None:
|
170 |
+
nowd_params.append(module.bias)
|
171 |
+
elif isinstance(module, nn.BatchNorm2d):
|
172 |
+
nowd_params += list(module.parameters())
|
173 |
+
return wd_params, nowd_params
|
174 |
+
|
175 |
+
|
176 |
+
class FeatureFusionModule(nn.Module):
|
177 |
+
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
178 |
+
super(FeatureFusionModule, self).__init__()
|
179 |
+
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
|
180 |
+
self.conv1 = nn.Conv2d(out_chan,
|
181 |
+
out_chan//4,
|
182 |
+
kernel_size = 1,
|
183 |
+
stride = 1,
|
184 |
+
padding = 0,
|
185 |
+
bias = False)
|
186 |
+
self.conv2 = nn.Conv2d(out_chan//4,
|
187 |
+
out_chan,
|
188 |
+
kernel_size = 1,
|
189 |
+
stride = 1,
|
190 |
+
padding = 0,
|
191 |
+
bias = False)
|
192 |
+
self.relu = nn.ReLU(inplace=True)
|
193 |
+
self.sigmoid = nn.Sigmoid()
|
194 |
+
self.init_weight()
|
195 |
+
|
196 |
+
def forward(self, fsp, fcp):
|
197 |
+
fcat = torch.cat([fsp, fcp], dim=1)
|
198 |
+
feat = self.convblk(fcat)
|
199 |
+
atten = F.avg_pool2d(feat, feat.size()[2:])
|
200 |
+
atten = self.conv1(atten)
|
201 |
+
atten = self.relu(atten)
|
202 |
+
atten = self.conv2(atten)
|
203 |
+
atten = self.sigmoid(atten)
|
204 |
+
feat_atten = torch.mul(feat, atten)
|
205 |
+
feat_out = feat_atten + feat
|
206 |
+
return feat_out
|
207 |
+
|
208 |
+
def init_weight(self):
|
209 |
+
for ly in self.children():
|
210 |
+
if isinstance(ly, nn.Conv2d):
|
211 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
212 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
213 |
+
|
214 |
+
def get_params(self):
|
215 |
+
wd_params, nowd_params = [], []
|
216 |
+
for name, module in self.named_modules():
|
217 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
218 |
+
wd_params.append(module.weight)
|
219 |
+
if not module.bias is None:
|
220 |
+
nowd_params.append(module.bias)
|
221 |
+
elif isinstance(module, nn.BatchNorm2d):
|
222 |
+
nowd_params += list(module.parameters())
|
223 |
+
return wd_params, nowd_params
|
224 |
+
|
225 |
+
|
226 |
+
class BiSeNet(nn.Module):
|
227 |
+
def __init__(self, n_classes, *args, **kwargs):
|
228 |
+
super(BiSeNet, self).__init__()
|
229 |
+
self.cp = ContextPath()
|
230 |
+
## here self.sp is deleted
|
231 |
+
self.ffm = FeatureFusionModule(256, 256)
|
232 |
+
self.conv_out = BiSeNetOutput(256, 256, n_classes)
|
233 |
+
self.conv_out16 = BiSeNetOutput(128, 64, n_classes)
|
234 |
+
self.conv_out32 = BiSeNetOutput(128, 64, n_classes)
|
235 |
+
self.init_weight()
|
236 |
+
|
237 |
+
def forward(self, x):
|
238 |
+
H, W = x.size()[2:]
|
239 |
+
feat_res8, feat_cp8, feat_cp16 = self.cp(x) # here return res3b1 feature
|
240 |
+
feat_sp = feat_res8 # use res3b1 feature to replace spatial path feature
|
241 |
+
feat_fuse = self.ffm(feat_sp, feat_cp8)
|
242 |
+
|
243 |
+
feat_out = self.conv_out(feat_fuse)
|
244 |
+
feat_out16 = self.conv_out16(feat_cp8)
|
245 |
+
feat_out32 = self.conv_out32(feat_cp16)
|
246 |
+
|
247 |
+
feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True)
|
248 |
+
feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True)
|
249 |
+
feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True)
|
250 |
+
return feat_out, feat_out16, feat_out32
|
251 |
+
|
252 |
+
def init_weight(self):
|
253 |
+
for ly in self.children():
|
254 |
+
if isinstance(ly, nn.Conv2d):
|
255 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
256 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
257 |
+
|
258 |
+
def get_params(self):
|
259 |
+
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], []
|
260 |
+
for name, child in self.named_children():
|
261 |
+
child_wd_params, child_nowd_params = child.get_params()
|
262 |
+
if isinstance(child, FeatureFusionModule) or isinstance(child, BiSeNetOutput):
|
263 |
+
lr_mul_wd_params += child_wd_params
|
264 |
+
lr_mul_nowd_params += child_nowd_params
|
265 |
+
else:
|
266 |
+
wd_params += child_wd_params
|
267 |
+
nowd_params += child_nowd_params
|
268 |
+
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params
|
269 |
+
|
270 |
+
|
271 |
+
if __name__ == "__main__":
|
272 |
+
net = BiSeNet(19)
|
273 |
+
net.cuda()
|
274 |
+
net.eval()
|
275 |
+
in_ten = torch.randn(16, 3, 640, 480).cuda()
|
276 |
+
out, out16, out32 = net(in_ten)
|
277 |
+
print(out.shape)
|
278 |
+
|
279 |
+
net.get_params()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
numpy
|
4 |
+
opencv-python
|
5 |
+
pillow
|
6 |
+
streamlit
|
7 |
+
mediapipe
|
resnet.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.utils.model_zoo as modelzoo
|
5 |
+
|
6 |
+
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
7 |
+
|
8 |
+
resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'
|
9 |
+
|
10 |
+
|
11 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
12 |
+
"""3x3 convolution with padding"""
|
13 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
14 |
+
padding=1, bias=False)
|
15 |
+
|
16 |
+
|
17 |
+
class BasicBlock(nn.Module):
|
18 |
+
def __init__(self, in_chan, out_chan, stride=1):
|
19 |
+
super(BasicBlock, self).__init__()
|
20 |
+
self.conv1 = conv3x3(in_chan, out_chan, stride)
|
21 |
+
self.bn1 = nn.BatchNorm2d(out_chan)
|
22 |
+
self.conv2 = conv3x3(out_chan, out_chan)
|
23 |
+
self.bn2 = nn.BatchNorm2d(out_chan)
|
24 |
+
self.relu = nn.ReLU(inplace=True)
|
25 |
+
self.downsample = None
|
26 |
+
if in_chan != out_chan or stride != 1:
|
27 |
+
self.downsample = nn.Sequential(
|
28 |
+
nn.Conv2d(in_chan, out_chan,
|
29 |
+
kernel_size=1, stride=stride, bias=False),
|
30 |
+
nn.BatchNorm2d(out_chan),
|
31 |
+
)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
residual = self.conv1(x)
|
35 |
+
residual = F.relu(self.bn1(residual))
|
36 |
+
residual = self.conv2(residual)
|
37 |
+
residual = self.bn2(residual)
|
38 |
+
|
39 |
+
shortcut = x
|
40 |
+
if self.downsample is not None:
|
41 |
+
shortcut = self.downsample(x)
|
42 |
+
|
43 |
+
out = shortcut + residual
|
44 |
+
out = self.relu(out)
|
45 |
+
return out
|
46 |
+
|
47 |
+
|
48 |
+
def create_layer_basic(in_chan, out_chan, bnum, stride=1):
|
49 |
+
layers = [BasicBlock(in_chan, out_chan, stride=stride)]
|
50 |
+
for i in range(bnum-1):
|
51 |
+
layers.append(BasicBlock(out_chan, out_chan, stride=1))
|
52 |
+
return nn.Sequential(*layers)
|
53 |
+
|
54 |
+
|
55 |
+
class Resnet18(nn.Module):
|
56 |
+
def __init__(self):
|
57 |
+
super(Resnet18, self).__init__()
|
58 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
59 |
+
bias=False)
|
60 |
+
self.bn1 = nn.BatchNorm2d(64)
|
61 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
62 |
+
self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
|
63 |
+
self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
|
64 |
+
self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
|
65 |
+
self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
|
66 |
+
self.init_weight()
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = self.conv1(x)
|
70 |
+
x = F.relu(self.bn1(x))
|
71 |
+
x = self.maxpool(x)
|
72 |
+
|
73 |
+
x = self.layer1(x)
|
74 |
+
feat8 = self.layer2(x) # 1/8
|
75 |
+
feat16 = self.layer3(feat8) # 1/16
|
76 |
+
feat32 = self.layer4(feat16) # 1/32
|
77 |
+
return feat8, feat16, feat32
|
78 |
+
|
79 |
+
def init_weight(self):
|
80 |
+
state_dict = modelzoo.load_url(resnet18_url)
|
81 |
+
self_state_dict = self.state_dict()
|
82 |
+
for k, v in state_dict.items():
|
83 |
+
if 'fc' in k: continue
|
84 |
+
self_state_dict.update({k: v})
|
85 |
+
self.load_state_dict(self_state_dict)
|
86 |
+
|
87 |
+
def get_params(self):
|
88 |
+
wd_params, nowd_params = [], []
|
89 |
+
for name, module in self.named_modules():
|
90 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
91 |
+
wd_params.append(module.weight)
|
92 |
+
if not module.bias is None:
|
93 |
+
nowd_params.append(module.bias)
|
94 |
+
elif isinstance(module, nn.BatchNorm2d):
|
95 |
+
nowd_params += list(module.parameters())
|
96 |
+
return wd_params, nowd_params
|