Andykool69 commited on
Commit
7e36dea
·
verified ·
1 Parent(s): 8292784

Created app.py

Browse files
Files changed (1) hide show
  1. app.py +257 -0
app.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision.transforms as T
3
+ import numpy as np
4
+ import cv2
5
+ import streamlit as st
6
+ import mediapipe as mp
7
+ from PIL import Image
8
+ import os
9
+ torch.classes.__path__ = []
10
+
11
+ class FaceHairSegmenter:
12
+ def __init__(self):
13
+ # Use MediaPipe for face detection
14
+ self.mp_face_detection = mp.solutions.face_detection
15
+ self.face_detection = self.mp_face_detection.FaceDetection(
16
+ model_selection=1, # Use full range model
17
+ min_detection_confidence=0.6
18
+ )
19
+
20
+ # Load BiSeNet model
21
+ self.model = self.load_model()
22
+
23
+ # Define transforms - adjust according to BiSeNet requirements
24
+ self.transform = T.Compose([
25
+ T.Resize((512, 512)),
26
+ T.ToTensor(),
27
+ T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
28
+ ])
29
+
30
+ # CelebAMask-HQ classes - focus on the categories we want to keep
31
+ self.keep_classes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18] # All except 0, 14, 16
32
+
33
+ def load_model(self):
34
+ try:
35
+ # Import locally to avoid dependency issues if model isn't present
36
+ from model import BiSeNet
37
+
38
+ # Initialize BiSeNet with 19 classes (for CelebAMask-HQ)
39
+ model = BiSeNet(n_classes=19)
40
+
41
+ # Try to load the pretrained weights using a safer approach
42
+ try:
43
+ # First attempt: standard loading
44
+ model.load_state_dict(torch.load('bisenet.pth', map_location=torch.device('cpu')))
45
+ except RuntimeError as e:
46
+ if "__path__._path" in str(e):
47
+ # Alternative loading approach if we encounter the class path error
48
+ print("Using alternative model loading approach...")
49
+ checkpoint = torch.load('bisenet.pth', map_location='cpu', weights_only=True)
50
+ model.load_state_dict(checkpoint)
51
+ else:
52
+ # Other type of RuntimeError, re-raise
53
+ raise
54
+
55
+ model.eval()
56
+
57
+ if torch.cuda.is_available():
58
+ model = model.cuda()
59
+
60
+ print("BiSeNet model loaded successfully")
61
+ return model
62
+ except Exception as e:
63
+ print(f"Error loading model: {e}")
64
+ # Let's provide a more detailed error message to help with debugging
65
+ import traceback
66
+ traceback.print_exc()
67
+ return None
68
+
69
+ def detect_faces(self, image):
70
+ """Detect faces using MediaPipe (expects image in RGB)."""
71
+ # Since image from cv2 is BGR, convert to RGB for MediaPipe
72
+ image_rgb = image if len(image.shape) == 3 and image.shape[2] == 3 else cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
73
+ h, w = image.shape[:2]
74
+
75
+ # Process with MediaPipe
76
+ results = self.face_detection.process(image_rgb)
77
+
78
+ bboxes = []
79
+ if results.detections:
80
+ for detection in results.detections:
81
+ bbox = detection.location_data.relative_bounding_box
82
+ x_min = max(0, int(bbox.xmin * w))
83
+ y_min = max(0, int(bbox.ymin * h))
84
+ x_max = min(w, int((bbox.xmin + bbox.width) * w))
85
+ y_max = min(h, int((bbox.ymin + bbox.height) * h))
86
+ bboxes.append((x_min, y_min, x_max, y_max))
87
+
88
+ if len(bboxes) > 1:
89
+ bboxes = self.remove_overlapping_boxes(bboxes)
90
+
91
+ return len(bboxes), bboxes
92
+
93
+ def remove_overlapping_boxes(self, boxes, overlap_threshold=0.5):
94
+ if not boxes:
95
+ return []
96
+ def box_area(box):
97
+ return (box[2] - box[0]) * (box[3] - box[1])
98
+ boxes = sorted(boxes, key=box_area, reverse=True)
99
+ keep = []
100
+ for current in boxes:
101
+ is_duplicate = False
102
+ for kept_box in keep:
103
+ x1 = max(current[0], kept_box[0])
104
+ y1 = max(current[1], kept_box[1])
105
+ x2 = min(current[2], kept_box[2])
106
+ y2 = min(current[3], kept_box[3])
107
+ if x1 < x2 and y1 < y2:
108
+ intersection = (x2 - x1) * (y2 - y1)
109
+ area1 = box_area(current)
110
+ area2 = box_area(kept_box)
111
+ union = area1 + area2 - intersection
112
+ iou = intersection / union
113
+ if iou > overlap_threshold:
114
+ is_duplicate = True
115
+ break
116
+ if not is_duplicate:
117
+ keep.append(current)
118
+ return keep
119
+
120
+ def segment_face_hair(self, image):
121
+ """Segment face using BiSeNet trained on CelebAMask-HQ."""
122
+ if self.model is None:
123
+ return image, "Model not loaded correctly."
124
+ if image is None or image.size == 0:
125
+ return image, "Invalid image provided."
126
+
127
+ # Detect faces
128
+ num_faces, bboxes = self.detect_faces(image)
129
+ if num_faces == 0:
130
+ return image, "No face detected! Please upload an image with a clear face."
131
+ elif num_faces > 1:
132
+ debug_img = image.copy()
133
+ for (x_min, y_min, x_max, y_max) in bboxes:
134
+ cv2.rectangle(debug_img, (x_min, y_min), (x_max, y_max), (255, 0, 0), 2)
135
+ return debug_img, f"{num_faces} faces detected! Please upload an image with exactly ONE face."
136
+
137
+ # Get the face bounding box (we'll use this only for ROI, not for final segmentation)
138
+ bbox = bboxes[0]
139
+ x_min, y_min, x_max, y_max = bbox
140
+ h, w = image.shape[:2]
141
+
142
+ # Expand bounding box for better segmentation
143
+ face_height = y_max - y_min + 550
144
+ face_width = x_max - x_min + 550
145
+
146
+ y_min_exp = max(0, y_min - int(face_height * 0.5)) # Expand more for hair
147
+ x_min_exp = max(0, x_min - int(face_width * 0.3))
148
+ x_max_exp = min(w, x_max + int(face_width * 0.3))
149
+ y_max_exp = min(h, y_max + int(face_height * 0.2))
150
+
151
+ # Crop and prepare image for BiSeNet
152
+ face_region = image[y_min_exp:y_max_exp, x_min_exp:x_max_exp]
153
+ original_face_size = face_region.shape[:2]
154
+
155
+ # Ensure RGB format for PIL
156
+ if face_region.shape[2] == 3:
157
+ pil_face = Image.fromarray(face_region)
158
+ else:
159
+ pil_face = Image.fromarray(cv2.cvtColor(face_region, cv2.COLOR_BGR2RGB))
160
+
161
+ # Apply transformations and run model
162
+ input_tensor = self.transform(pil_face).unsqueeze(0)
163
+ if torch.cuda.is_available():
164
+ input_tensor = input_tensor.cuda()
165
+
166
+ with torch.no_grad():
167
+ out = self.model(input_tensor)[0]
168
+ parsing = out.squeeze(0).argmax(0).byte().cpu().numpy()
169
+
170
+ # Resize parsing map back to original size
171
+ parsing = cv2.resize(parsing, (original_face_size[1], original_face_size[0]),
172
+ interpolation=cv2.INTER_NEAREST)
173
+
174
+ # Create mask that keeps only the classes we want
175
+ mask = np.zeros_like(parsing, dtype=np.uint8)
176
+ for cls_id in self.keep_classes:
177
+ mask[parsing == cls_id] = 255
178
+
179
+ # Refine the mask
180
+ kernel = np.ones((3, 3), np.uint8)
181
+ mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
182
+
183
+ # Create full image mask (initialize with zeros)
184
+ full_mask = np.zeros((h, w), dtype=np.uint8)
185
+ # Place the face mask in the right position
186
+ full_mask[y_min_exp:y_max_exp, x_min_exp:x_max_exp] = mask
187
+
188
+ # Create the RGBA output
189
+ if image.shape[2] == 3: # RGB
190
+ rgba = np.dstack((image, np.zeros((h, w), dtype=np.uint8)))
191
+ # Copy only the face region with its alpha
192
+ rgba[y_min_exp:y_max_exp, x_min_exp:x_max_exp, 3] = mask
193
+ else: # Already RGBA or other format
194
+ rgba = np.dstack((cv2.cvtColor(image, cv2.COLOR_BGR2RGB),
195
+ np.zeros((h, w), dtype=np.uint8)))
196
+ rgba[y_min_exp:y_max_exp, x_min_exp:x_max_exp, 3] = mask
197
+
198
+ return rgba, "Face segmented successfully!"
199
+
200
+ # Streamlit app
201
+ def main():
202
+ st.set_page_config(page_title="Face Segmentation Tool", layout="wide")
203
+
204
+ st.title("Face Segmentation Tool")
205
+ st.markdown("""
206
+ Upload an image to extract the face with a transparent background.
207
+
208
+ ## Guidelines:
209
+ - Upload an image with **exactly one face**
210
+ - The face should be clearly visible
211
+ - For best results, use images with good lighting
212
+ """)
213
+
214
+ col1, col2 = st.columns(2)
215
+
216
+ with col1:
217
+ st.header("Input Image")
218
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
219
+
220
+ if uploaded_file is not None:
221
+ # Convert to numpy array
222
+ file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
223
+ image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
224
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
225
+
226
+ st.image(image, caption="Uploaded Image", use_container_width=True)
227
+
228
+ if st.button("Segment Face"):
229
+ with st.spinner("Processing..."):
230
+ segmenter = FaceHairSegmenter()
231
+ result, message = segmenter.segment_face_hair(image)
232
+
233
+ with col2:
234
+ st.header("Segmented Result")
235
+ st.image(result, caption="Segmented Face", use_container_width=True)
236
+ st.text(message)
237
+
238
+ # Add download button for the result
239
+ if "No face detected" not in message and "faces detected" not in message:
240
+ # Convert numpy array to PIL Image
241
+ result_img = Image.fromarray(result)
242
+
243
+ # Create a BytesIO object
244
+ from io import BytesIO
245
+ buf = BytesIO()
246
+ result_img.save(buf, format="PNG")
247
+
248
+ # Add download button
249
+ st.download_button(
250
+ label="Download Segmented Face",
251
+ data=buf.getvalue(),
252
+ file_name="segmented_face.png",
253
+ mime="image/png"
254
+ )
255
+
256
+ if __name__ == "__main__":
257
+ main()