|
import torch |
|
import torch.nn.functional as F |
|
from typing import Dict, Tuple, Optional |
|
import network |
|
|
|
class Predictor: |
|
""" |
|
Wrapper for ScribblePrompt Unet model |
|
""" |
|
def __init__(self, path: str, verbose: bool = False): |
|
|
|
self.verbose = verbose |
|
|
|
assert path.exists(), f"Checkpoint {path} does not exist" |
|
self.path = path |
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.build_model() |
|
self.load() |
|
self.model.eval() |
|
self.to_device() |
|
|
|
def build_model(self): |
|
""" |
|
Build the model |
|
""" |
|
self.model = network.UNet( |
|
in_channels = 5, |
|
out_channels = 1, |
|
features = [192, 192, 192, 192], |
|
) |
|
|
|
def load(self): |
|
""" |
|
Load the state of the model from a checkpoint file. |
|
""" |
|
with (self.path).open("rb") as f: |
|
state = torch.load(f, map_location=self.device) |
|
self.model.load_state_dict(state, strict=True) |
|
if self.verbose: |
|
print( |
|
f"Loaded checkpoint from {self.path} to {self.device}" |
|
) |
|
|
|
def to_device(self): |
|
""" |
|
Move the model to cpu or gpu |
|
""" |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.model = self.model.to(self.device) |
|
|
|
def predict(self, prompts: Dict[str,any], img_features: Optional[torch.Tensor] = None, multimask_mode: bool = False): |
|
""" |
|
Make predictions! |
|
|
|
Returns: |
|
mask (torch.Tensor): H x W |
|
img_features (torch.Tensor): B x 1 x H x W (for SAM models) |
|
low_res_mask (torch.Tensor): B x 1 x H x W logits |
|
""" |
|
if self.verbose: |
|
print("point_coords", prompts.get("point_coords", None)) |
|
print("point_labels", prompts.get("point_labels", None)) |
|
print("box", prompts.get("box", None)) |
|
print("img", prompts.get("img").shape, prompts.get("img").min(), prompts.get("img").max()) |
|
if prompts.get("scribble") is not None: |
|
print("scribble", prompts.get("scribble", None).shape, prompts.get("scribble").min(), prompts.get("scribble").max()) |
|
|
|
original_shape = prompts.get('img').shape[-2:] |
|
|
|
|
|
prompts = rescale_inputs(prompts) |
|
|
|
|
|
x = prepare_inputs(prompts).float() |
|
|
|
with torch.no_grad(): |
|
yhat = self.model(x.to(self.device)).cpu() |
|
|
|
mask = torch.sigmoid(yhat) |
|
|
|
|
|
mask = F.interpolate(mask, size=original_shape, mode='bilinear').squeeze() |
|
|
|
|
|
return mask, None, yhat |
|
|
|
|
|
|
|
|
|
|
|
|
|
def rescale_inputs(inputs: Dict[str,any], res=128): |
|
""" |
|
Rescale the inputs |
|
""" |
|
h,w = inputs['img'].shape[-2:] |
|
|
|
if h != res or w != res: |
|
|
|
inputs.update(dict( |
|
img = F.interpolate(inputs['img'], size=(res,res), mode='bilinear') |
|
)) |
|
|
|
if inputs.get('scribble') is not None: |
|
inputs.update({ |
|
'scribble': F.interpolate(inputs['scribble'], size=(res,res), mode='bilinear') |
|
}) |
|
|
|
if inputs.get("box") is not None: |
|
boxes = inputs.get("box").clone() |
|
coords = boxes.reshape(-1, 2, 2) |
|
coords[..., 0] = coords[..., 0] * (res / w) |
|
coords[..., 1] = coords[..., 1] * (res / h) |
|
inputs.update({'box': coords.reshape(1, -1, 4).int()}) |
|
|
|
if inputs.get("point_coords") is not None: |
|
coords = inputs.get("point_coords").clone() |
|
coords[..., 0] = coords[..., 0] * (res / w) |
|
coords[..., 1] = coords[..., 1] * (res / h) |
|
inputs.update({'point_coords': coords.int()}) |
|
|
|
return inputs |
|
|
|
def prepare_inputs(inputs: Dict[str,torch.Tensor], device = None) -> torch.Tensor: |
|
""" |
|
Prepare inputs for ScribblePrompt Unet |
|
|
|
Returns: |
|
x (torch.Tensor): B x 5 x H x W |
|
""" |
|
img = inputs['img'] |
|
if device is None: |
|
device = img.device |
|
|
|
img = img.to(device) |
|
shape = tuple(img.shape[-2:]) |
|
|
|
if inputs.get("box") is not None: |
|
|
|
|
|
|
|
box_embed = bbox_shaded(inputs['box'], shape=shape, device=device) |
|
else: |
|
box_embed = torch.zeros(img.shape, device=device) |
|
|
|
if inputs.get("point_coords") is not None: |
|
|
|
|
|
scribble_click_embed = click_onehot(inputs['point_coords'], inputs['point_labels'], shape=shape) |
|
else: |
|
scribble_click_embed = torch.zeros((img.shape[0], 2) + shape, device=device) |
|
|
|
if inputs.get("scribble") is not None: |
|
|
|
|
|
scribble_click_embed = torch.clamp(scribble_click_embed + inputs.get('scribble'), min=0.0, max=1.0) |
|
|
|
if inputs.get('mask_input') is not None: |
|
|
|
mask_input = inputs['mask_input'] |
|
else: |
|
|
|
mask_input = torch.zeros(img.shape, device=img.device) |
|
|
|
x = torch.cat((img, box_embed, scribble_click_embed, mask_input), dim=-3) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
def click_onehot(point_coords, point_labels, shape: Tuple[int,int] = (128,128), indexing='xy'): |
|
""" |
|
Represent clicks as two HxW binary masks (one for positive clicks and one for negative) |
|
with 1 at the click locations and 0 otherwise |
|
|
|
Args: |
|
point_coords (torch.Tensor): BxNx2 tensor of xy coordinates |
|
point_labels (torch.Tensor): BxN tensor of labels (0 or 1) |
|
shape (tuple): output shape |
|
Returns: |
|
embed (torch.Tensor): Bx2xHxW tensor |
|
""" |
|
assert indexing in ['xy','uv'], f"Invalid indexing: {indexing}" |
|
assert len(point_coords.shape) == 3, "point_coords must be BxNx2" |
|
assert point_coords.shape[-1] == 2, "point_coords must be BxNx2" |
|
assert point_labels.shape[-1] == point_coords.shape[1], "point_labels must be BxN" |
|
assert len(shape)==2, f"shape must be 2D: {shape}" |
|
|
|
device = point_coords.device |
|
batch_size = point_coords.shape[0] |
|
n_points = point_coords.shape[1] |
|
|
|
embed = torch.zeros((batch_size,2)+shape, device=device) |
|
labels = point_labels.flatten().float() |
|
|
|
idx_coords = torch.cat(( |
|
torch.arange(batch_size, device=device).reshape(-1,1).repeat(1,n_points)[...,None], |
|
point_coords |
|
), axis=2).reshape(-1,3) |
|
|
|
if indexing=='xy': |
|
embed[ idx_coords[:,0], 0, idx_coords[:,2], idx_coords[:,1] ] = labels |
|
embed[ idx_coords[:,0], 1, idx_coords[:,2], idx_coords[:,1] ] = 1.0-labels |
|
else: |
|
embed[ idx_coords[:,0], 0, idx_coords[:,1], idx_coords[:,2] ] = labels |
|
embed[ idx_coords[:,0], 1, idx_coords[:,1], idx_coords[:,2] ] = 1.0-labels |
|
|
|
return embed |
|
|
|
|
|
def bbox_shaded(boxes, shape: Tuple[int,int] = (128,128), device='cpu'): |
|
""" |
|
Represent bounding boxes as a binary mask with 1 inside boxes and 0 otherwise |
|
|
|
Args: |
|
boxes (torch.Tensor): Bx1x4 [x1, y1, x2, y2] |
|
Returns: |
|
bbox_embed (torch.Tesor): Bx1xHxW according to shape |
|
""" |
|
assert len(shape)==2, "shape must be 2D" |
|
if isinstance(boxes, torch.Tensor): |
|
boxes = boxes.int().cpu().numpy() |
|
|
|
batch_size = boxes.shape[0] |
|
n_boxes = boxes.shape[1] |
|
bbox_embed = torch.zeros((batch_size,1)+tuple(shape), device=device, dtype=torch.float32) |
|
|
|
if boxes is not None: |
|
for i in range(batch_size): |
|
for j in range(n_boxes): |
|
x1, y1, x2, y2 = boxes[i,j,:] |
|
x_min = min(x1,x2) |
|
x_max = max(x1,x2) |
|
y_min = min(y1,y2) |
|
y_max = max(y1,y2) |
|
bbox_embed[ i, 0, y_min:y_max, x_min:x_max ] = 1.0 |
|
|
|
return bbox_embed |