AminFaraji commited on
Commit
a795478
·
verified ·
1 Parent(s): 0f5f0fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -214
app.py CHANGED
@@ -1,251 +1,75 @@
1
- print(55877)
2
- import argparse
3
- # from dataclasses import dataclass
4
- from langchain.prompts import ChatPromptTemplate
5
  try:
6
  from langchain_community.vectorstores import Chroma
7
  except:
8
  from langchain_community.vectorstores import Chroma
9
- #from langchain_openai import OpenAIEmbeddings
10
- #from langchain_openai import ChatOpenAI
11
-
12
- # from langchain.document_loaders import DirectoryLoader
13
- from langchain_community.document_loaders import DirectoryLoader
14
- from langchain.text_splitter import RecursiveCharacterTextSplitter
15
- from langchain.schema import Document
16
- # from langchain.embeddings import OpenAIEmbeddings
17
- #from langchain_openai import OpenAIEmbeddings
18
- from langchain_community.vectorstores import Chroma
19
- import openai
20
- from dotenv import load_dotenv
21
- import os
22
- import shutil
23
-
24
 
25
- import re
26
- import warnings
27
- from typing import List
28
 
29
- import torch
30
- from langchain import PromptTemplate
31
  from langchain.chains import ConversationChain
32
  from langchain.chains.conversation.memory import ConversationBufferWindowMemory
33
- from langchain.llms import HuggingFacePipeline
34
- from langchain.schema import BaseOutputParser
35
- from transformers import (
36
- AutoModelForCausalLM,
37
- AutoTokenizer,
38
- StoppingCriteria,
39
- StoppingCriteriaList,
40
- pipeline,
41
- )
42
-
43
- warnings.filterwarnings("ignore", category=UserWarning)
44
-
45
- MODEL_NAME = "tiiuae/falcon-7b-instruct"
46
-
47
- model = AutoModelForCausalLM.from_pretrained(
48
- MODEL_NAME, trust_remote_code=True
49
- )
50
- model = model.eval()
51
- print('model loadeddddddddddddddddddddddd')
52
-
53
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
54
- print(f"Model device: {model.device}")
55
-
56
- # a custom embedding
57
- from sentence_transformers import SentenceTransformer
58
- from langchain_experimental.text_splitter import SemanticChunker
59
- from typing import List
60
-
61
-
62
- class MyEmbeddings:
63
- def __init__(self):
64
- self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
65
- #self.model=model
66
-
67
- def embed_documents(self, texts: List[str]) -> List[List[float]]:
68
- return [self.model.encode(t).tolist() for t in texts]
69
- def embed_query(self, query: str) -> List[float]:
70
- return [self.model.encode([query])][0][0].tolist()
71
-
72
-
73
- embeddings = MyEmbeddings()
74
-
75
- splitter = SemanticChunker(embeddings)
76
-
77
- PROMPT_TEMPLATE = """
78
- Answer the question based only on the following context:
79
-
80
- {context}
81
-
82
- ---
83
-
84
- Answer the question based on the above context: {question}
85
- """
86
-
87
-
88
- # Create CLI.
89
- #parser = argparse.ArgumentParser()
90
- #parser.add_argument("query_text", type=str, help="The query text.")
91
- #args = parser.parse_args()
92
- #query_text = args.query_text
93
-
94
- # a sample query to be asked from the bot and it is expected to be answered based on the template
95
- query_text="what did alice say to rabbit"
96
-
97
- # Prepare the DB.
98
- #embedding_function = OpenAIEmbeddings() # main
99
 
100
- CHROMA_PATH = "chroma8"
101
- # call the chroma generated in a directory
102
- db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
103
 
104
- # Search the DB for similar documents to the query.
105
- results = db.similarity_search_with_relevance_scores(query_text, k=2)
106
- if len(results) == 0 or results[0][1] < 0.5:
107
- print(f"Unable to find matching results.")
108
 
109
 
110
- context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
111
- prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
112
- prompt = prompt_template.format(context=context_text, question=query_text)
113
- print(prompt)
114
 
115
 
116
 
 
 
117
 
118
- generation_config = model.generation_config
119
- generation_config.temperature = 0
120
- generation_config.num_return_sequences = 1
121
- generation_config.max_new_tokens = 256
122
- generation_config.use_cache = False
123
- generation_config.repetition_penalty = 1.7
124
- generation_config.pad_token_id = tokenizer.eos_token_id
125
- generation_config.eos_token_id = tokenizer.eos_token_id
126
- generation_config
127
 
128
- prompt = """
129
- The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
130
 
131
- Current conversation:
132
 
133
- Human: Who is Dwight K Schrute?
134
- AI:
135
- """.strip()
136
- input_ids = tokenizer(prompt, return_tensors="pt").input_ids
137
- input_ids = input_ids.to(model.device)
138
 
139
- class StopGenerationCriteria(StoppingCriteria):
140
- def __init__(
141
- self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
142
- ):
143
- stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
144
- self.stop_token_ids = [
145
- torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
146
- ]
147
 
148
- def __call__(
149
- self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
150
- ) -> bool:
151
- for stop_ids in self.stop_token_ids:
152
- if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
153
- return True
154
- return False
155
 
156
- stop_tokens = [["Human", ":"], ["AI", ":"]]
157
- stopping_criteria = StoppingCriteriaList(
158
- [StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
159
  )
160
 
161
 
162
- generation_pipeline = pipeline(
163
- model=model,
164
- tokenizer=tokenizer,
165
- return_full_text=True,
166
- task="text-generation",
167
- stopping_criteria=stopping_criteria,
168
- generation_config=generation_config,
169
- )
170
-
171
- llm = HuggingFacePipeline(pipeline=generation_pipeline)
172
 
173
 
174
- # propably sets the number of previous conversation history to take into account for new answers
175
  template = """
176
- The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
177
- Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
178
- Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
179
-
180
- Current conversation:
181
- {history}
182
- Human: {input}
183
- AI:""".strip()
184
-
185
- prompt = PromptTemplate(input_variables=["history", "input"], template=template)
186
- memory = ConversationBufferWindowMemory(
187
- memory_key="history", k=6, return_only_outputs=True
188
- )
189
-
190
- chain = ConversationChain(llm=llm, memory=memory, prompt=prompt, verbose=True)
191
 
192
 
 
 
193
 
194
- class CleanupOutputParser(BaseOutputParser):
195
- def parse(self, text: str) -> str:
196
- user_pattern = r"\nUser"
197
- text = re.sub(user_pattern, "", text)
198
- human_pattern = r"\nHuman:"
199
- text = re.sub(human_pattern, "", text)
200
- ai_pattern = r"\nAI:"
201
- return re.sub(ai_pattern, "", text).strip()
202
 
203
- @property
204
- def _type(self) -> str:
205
- return "output_parser"
206
 
 
207
 
208
 
209
- class CleanupOutputParser(BaseOutputParser):
210
- def parse(self, text: str) -> str:
211
- user_pattern = r"\nUser"
212
- text = re.sub(user_pattern, "", text)
213
- human_pattern = r"\nquestion:"
214
- text = re.sub(human_pattern, "", text)
215
- ai_pattern = r"\nanswer:"
216
- return re.sub(ai_pattern, "", text).strip()
217
 
218
- @property
219
- def _type(self) -> str:
220
- return "output_parser"
221
 
222
 
223
 
224
- template = """
225
- The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
226
- Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
227
- Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
228
 
229
- Current conversation:
230
- {history}
231
- Human: {input}
232
- AI:""".strip()
233
-
234
- prompt = PromptTemplate(input_variables=["history", "input"], template=template)
235
-
236
- memory = ConversationBufferWindowMemory(
237
- memory_key="history", k=3, return_only_outputs=True
238
- )
239
 
240
  chain = ConversationChain(
241
  llm=llm,
242
- memory=memory,
243
  prompt=prompt,
244
- output_parser=CleanupOutputParser(),
245
  verbose=True,
246
  )
247
 
248
 
 
249
  # Generate a response from the Llama model
250
  def get_llama_response(message: str, history: list) -> str:
251
  """
@@ -261,29 +85,23 @@ def get_llama_response(message: str, history: list) -> str:
261
  query_text =message
262
 
263
  results = db.similarity_search_with_relevance_scores(query_text, k=2)
264
- if len(results) == 0 or results[0][1] < 0.5:
265
- print(f"Unable to find matching results.")
266
 
267
 
268
- context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results ])
269
 
270
  template = """
271
- The following is a conversation between a human an AI. Answer question based only on the conversation.
 
272
 
273
- Current conversation:
274
  {history}
275
 
276
  """
277
-
278
-
279
-
280
  s="""
 
281
 
282
- \n question: {input}
283
-
284
- \n answer:""".strip()
285
-
286
-
287
  prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)
288
 
289
  #print(template)
@@ -293,6 +111,8 @@ def get_llama_response(message: str, history: list) -> str:
293
  #return response.strip()
294
 
295
 
 
296
  import gradio as gr
297
- iface = gr.Interface(fn=get_llama_response, inputs="text", outputs="text")
 
298
  iface.launch(share=True)
 
 
 
 
 
1
  try:
2
  from langchain_community.vectorstores import Chroma
3
  except:
4
  from langchain_community.vectorstores import Chroma
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
 
 
 
6
 
 
 
7
  from langchain.chains import ConversationChain
8
  from langchain.chains.conversation.memory import ConversationBufferWindowMemory
9
+ from langchain import PromptTemplate
10
+ from langchain_core.prompts import ChatPromptTemplate
11
+ from langchain_groq import ChatGroq
12
+ from langchain.vectorstores import Chroma
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
 
 
 
14
 
 
 
 
 
15
 
16
 
 
 
 
 
17
 
18
 
19
 
20
+ import os
21
+ import requests # Or your Groq library
22
 
23
+ groq_api_key = os.environ.get("my_groq_api_key")
 
 
 
 
 
 
 
 
24
 
25
+ # Initialize a ChatGroq object with a temperature of 0 and the "mixtral-8x7b-32768" model.
26
+ llm = ChatGroq(temperature=0, model_name="llama3-70b-8192",api_key=groq_api_key)
27
 
 
28
 
29
+ # we run this cell every time
30
+ db = Chroma(embedding_function=embeddings, persist_directory='/Persian Chroma/')
 
 
 
31
 
 
 
 
 
 
 
 
 
32
 
 
 
 
 
 
 
 
33
 
34
+ memory = ConversationBufferWindowMemory(
35
+ memory_key="history", k=3, return_only_outputs=True
 
36
  )
37
 
38
 
 
 
 
 
 
 
 
 
 
 
39
 
40
 
 
41
  template = """
42
+ محتوای زیر بین انسان و هوش مصنوعی است. براساس این مکالمه به سوال مطرح شده جواب بده
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
 
45
+ محتوا:
46
+ {history}
47
 
48
+ """
49
+ s="""
 
 
 
 
 
 
50
 
51
+ \n سوال: {input}
 
 
52
 
53
+ \n جواب:""".strip()
54
 
55
 
56
+ prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)
 
 
 
 
 
 
 
57
 
 
 
 
58
 
59
 
60
 
 
 
 
 
61
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  chain = ConversationChain(
64
  llm=llm,
65
+
66
  prompt=prompt,
67
+ memory=memory,
68
  verbose=True,
69
  )
70
 
71
 
72
+
73
  # Generate a response from the Llama model
74
  def get_llama_response(message: str, history: list) -> str:
75
  """
 
85
  query_text =message
86
 
87
  results = db.similarity_search_with_relevance_scores(query_text, k=2)
88
+ context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
 
89
 
90
 
91
+
92
 
93
  template = """
94
+ محتوای زیر بین انسان و هوش مصنوعی است. براساس این مکالمه به سوال مطرح شده جواب بده
95
+
96
 
97
+ محتوا:
98
  {history}
99
 
100
  """
 
 
 
101
  s="""
102
+ \n سوال: {input}
103
 
104
+ \n جواب:""".strip()
 
 
 
 
105
  prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)
106
 
107
  #print(template)
 
111
  #return response.strip()
112
 
113
 
114
+
115
  import gradio as gr
116
+ iface = gr.Interface(fn=get_llama_response, inputs=gr.Textbox(),
117
+ outputs="textbox")
118
  iface.launch(share=True)